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Preface

This book is based on a course [ have given five times at the University of
Michigan, beginning in 1973. The aim is 10 present an introduction to a
sampling of ideas, phenomena, and methods from the subject of partial
differential equations that can be presented in one semester and requires no
previous knowledge of differential equations. The problems, with hints and
discussion, form an important and integral part of the course.

In our department, students with a variety of specialties—notably differen-
tial geometry, numerical analysis, mathematical physics, complex analysis,
physics, and partial differential equations—have a need for such a course.

The goal of a one-term course forces the omission of many topics. Everyone,
including me, can find fault with the selections that I have made.

One of the things that makes partial differential equations difficult to learn
is that it uses a wide variety of tools. In a short course, there is no time for the
leisurely development of background material. Consequently, I suppose that
the reader is trained in advanced calculus, real analysis, the rudiments of
complex analysis, and the language of functional analysis. Such a background
is not unusual for the students mentioned above. Students missing one of the
“essentials™ can usually catch up simultaneously.

A more difficult problem is what to do about the Theory of Distributions.
The compromise which I have found workable is the following. The first
chapter of the book, which takes about nine fifty-minute hours, does not use
distributions. The second chapter is devoted to a study of the Fourier trans-
form of tempered distributions. Knowledge of the basics about 2(Q), £(Q),
2'(Q), and &'(R2) is assumed at that time. My experience teaching the course
indicates that students can pick up the required facility. [ have provided, in
an appendix, a short crash course on Distribution Theory. From Chapter 2
on, Distribution Theory is the basic language of the text, providing a good
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setting for reinforcing the fundamentals. My experience in teaching this course
is that students have less difficulty with the distribution theory than with
geometric ideas from advanced calculus (¢.g. dp is a one-form which annihi-
lates the tangent space to {¢ = 0}).

There is a good deal more material here than can be taught in one semester.
This provides material for a more leisurely two-semester course and allows
the reader to browse in directions which interest him/her. The essential core
is the following:

Chapter 1. Almost all. A selection of examples must be made.

Chapter 2. All but the L” theory for p # 2. Some can be left for students to
read.

Chapter 3. The first seven sections. One of the ill-posed problems should
be presented.

Chapter 4. Sections 1, 2, S, 6, and 7 plus a representative sampling from
Sections 3 and 4.

Chapter 5. Sections 1, 2, 3, 10, and 11 plus at least the statements of the
standard Elliptic Regularity Theorems.

These topics take less than one semester.

An introductory course should touch on equations of the classical types,
elliptic, hyperbolic, parabolic, and also present some other equations. The
energy method, maximum principle, and Fourier transform should be used.
The classical fundamental solutions should appear. These conditions are met
by the choices above.

I think that one learns more from pursuing examples to a certain depth,
rather than giving a quick gloss over an enormous range of topics. For this
reason, many of the equations discussed in the book are treated several times.
At each encounter, new methods or points of view deepen the appreciation of
these fundamental examples.

I have made a conscious effort to emphasize qualitative information about
solutions, so that students can learn the features that distinguish various
differential equations. Also the origins in applications are discussed in con-
junction with these properties. The interpretation of the properties of solu-
tions in physical and geometric terms generates many interesting ideas and
questions.

[t is my impression that one learns more (rom trying the problems than
from any other part of the course. Thus I plead with readers to attempt the
problems.

Let me point out some omissions. In Chapter 1, the Cauchy-Kowaleskaya
Theorem is discussed, stated, and much applied, but the proof is only in-
dicated. Complete proofs can be found in many places, and it is my opinion
that the techniques of proof are not as central as other things which can be
presented in the time gained. The classical integration methods of Hamilton
and Jacobi for nonlinear real scalar first-order equations are omitted entirely.
My opinion is that when needed these should be presented along with sym-
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plectic geometry. There is a preponderance of linear equations, at the expense
of nonlinear equations. One of the main points for nonlinear equations is
their differences with the linear. Clearly there is an order in which these things
should belearned. If one includes the problems, a reasonable dose of nonlinear
examples and phenomena are presented. With the exception of the elliptic
theory, there isa strong preponderance of equations with constant coefficients,
and especially Fourier transform techniques. The reason for this choice is that
one can find detailed and interesting information without technical complex-
ity. In this way one learns the ideas of the theory of partial differential
equations at minimal cost. In the process. many methods are introduced which
work for variable coeflicients and this is pointed out at the appropriate places.

Compared to other texts with similar level and scope (those of Folland,
Garabedian, John, and Treves are my favorites), the reader will find that the
present treatment is more heavily weighted toward initial value problems.
This. 1 confess. corresponds to my own preference. Many time-independent
problems have their origin as steady states of such time-dependent problems
and it is as such that they are presented here.

A word about the references. Most are to textbooks, and 1 have system-
atically rcferred to the most recent editions and to English translations. As
a result the dates do not give a good idea of the original publication dates.
For results proved in the last 40 years. I have leaned toward citing the original
papers to give the correct chronology. Classical results are usually credited
without reference.

I welcome comments, critiques. suggestions, corrections, etc. from users of
this book, so that later editions may benefit from experience with the first.

So many people have contributed in so many diffcrent way to my apprecia-
tion of partial differential equations that it is impossible to list and thank them
all individually. However. specific influences on the structure of this book have
been P.D. Lax and P. Garabedian from whom [ took courses at the level of
this book: Joel Smoller who teaches the same course in a different but related
way; and Howard Shaw whose class notes saved me when my own lecture
notes disappeared inside a moving van. The integration of problems into the
flow of the text was much influenced by the Differential Topology text of
Guillemin and Pollack. I have aiso benefited from having had exceptional
students take this course and offer their criticism. In particular, I would like
to thank Z. Xin whose solutions. corrections. and suggestions have greatly
improved the problems. Chapters of a preliminary version of this text were
read and criticized by M. Beals, J.L. Joly. M. Reed, J. Smoller, M. Taylor, and
M. Weinstein. Their advice has been very helpful. My colleagues and co-
workers in partial differential equations have taught me much and in many
ways. [ offer a hearty thank you to them all.

The love, support, and tolerance of my family were essential for the writing
of this book. The importance of these things to me extends far beyond
professional productivity, and I offer my profound appreciation.
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CHAPTER 1

Power Series Methods

§1.1. The Simplest Partial Differential Equation

It takes a little time and a few basic examples to develop intuition. This is
particularly true of the subject of partial differential equations which has
an enormous variety of technique and phenomena within its confines. This
section describes the simplest nontrivial partial differential equation

u,(L, x) + cu,(t, x) =0, t.xeR, ceC. (1)

The equation is of first order, is linear with constant coeflicients, and involves
derivatives with respect to both variables. The unknown is a possibly complex
valued function u of two real variables. This example reveals one of the
fundamental dichotomies of the subject, the equation is hyperbolic if c € R
and elliptic otherwise. The equation is radically different in these two cases in
spite of the similar appearance.

The use of “¢” is meant to suggest time. One can use the equation to march
forward in time as follows. Given u at time ¢, u(t, -), one can compute the value
of

ul(‘v ') = -C&.U(I, )v
and then advance the time using
u(t + At, )= ult, *) + u,(t, )At = (1 — cAtd,)ult, -). (2)

This marching algorithm suggests that the initial calue problem or Cauchy

problem is appropriate. Thus, given g(x) we seek u satisfying (1) and the initial
condition

u(, -) = g(°). (3)
For ge C*(R) and ne N we may choose a time step At = |/n and find
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()+(-

Since the approximation (2) improves as At decreases to zero it is not un-
reasorfable to think that as n, k — o with k/n = t fixed, the approximations
on the right approach the values u(f, -) of a solution.

With t = k/n, (4) reads

s\t
u(t, -)z(l —‘c:’) g(-). (3)

Letting k tend to infinity suggests the formal identity

approximate values

-~ S

k

u(t, ) = exp(—ctc,)g. (6)

For polynomial g, formally expanding the exponential and using Taylor’s
Theorem yields '
(—ct)’g"(")
L——

n.

ug, -) = =g(- - ct). (7
It is easy to verify that for polynomial g, g(x - ct) is indeed a solution of the
initial value problem and is also the limit of the approximations (4). In fact,
if g is the restriction to R of an analytic function on |Im x| < R, then one has
convergence for jt| < R/|c| to the solution g(x — ct).

If ¢ is rea). then the formula g(x — cf) still provides a solution even when ¢
does not have an analytic continuation to a neighborhood of the real axis.
However, the approximations (5) will not converge if the derivatives of g grow
faster than those of an analytic function.

Finally, if ¢ is complex then the formula suggests that g must have a natural
extension from real to complex values of x in order for there to be a solution.

The ideas suggested by the formal computations are next verified by ex-
amining the initial value problem (1), (3) following a different and easicer route.

For real ¢, the differential equation (1) asserts that the directional derivative
of u in the direction (1, ¢) vanishes (Figure 1.1.1). Thus u € C'(R?) is a solution
if and only if u is constant on each of the lines x — ¢t = constant. These lines,
integral curves of the vector field ¢/Ct + c¢/éx. are called characteristic lines
or rays. This observation yields the following result.

Theorem 1. If c is real and g € C'(R), there is a unique solution u e C'(R?) to
the initial value problem (1), (3). The solution is given by the formula u(t, x) =
g(x — ct). If g € C*(R) with k > 1, then u e C*R).

The solution u represents undistorted wave propagation with speed c. The
characteristic lines have slope di/dx equal to 1/c and speed dx/dt equal to c.
The value of u at t, X is determined by g at ¥ — ct. This illustrates the ideas of
domain of determinacy and domain of influence. The domain of determinacy
of , X is the point (0, ¥ — cf) on the line 1 = 0. The domain of influence of the
point (0, x) on the initial line is the characteristic x — ct = x (Figure 1.1.2).
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t

X - ct = const. c

a characteristic

curve. or ray. 1 Direction of the

derivative d, + ¢9,
© >~ x
c
1
Figure 1.1.1
!
(1, x) X ~ ¢l = x, the domain

of influence u x

domain of determinagy
of (1, x)

Figure 1.1.2
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Nearby initial data g yield nearby solutions u. A precise statement is that
the map from g to u is continuous from C*(R) to C*(R?) for any k > 1. The
topology in the spaces C* are defined by a countable family of seminorms. To
avoid this complication at this time, consider data g which belong to BC*(R),
the set of C* functions each of whose derivatives, of order less than or equal
to k, is bounded on R. This is a Banach space with norm

(&)
(n())-

For the solution of the initial value problem (1), (3)

&arult, x) = (—cy (;;c)mg(x — ct).

An immediate consequence is the following corollary.

gl acrn) = z

Jsk

Lo
BC*(R?) is defined similarly with

el goxg Ry E Z

Jutovjash L*(R%

Corollary 2. Force Rand k > | in N, the map from the Cauchy data g to the
solution u of the initial value problem (1), (3) is continuous from BC*(R) to
BC*(R?).

The case of imaginary c is quite different. In particular, the imtial value
problem is no longer well set. We analyze the case ¢ = —i, leaving the case of
general ¢ € C\R to the problems.

Suppose Q = R? is open and u € C*(Q) satisfies u, = iu,. Identify Q with a
subset of C by

X, t—Xx + il.
The corresponding subset of C is denoted Q. Definea function f: Q¢ — € by
S(x + it) = u(e, x).
With - = x + it, we have

Ef=3_u
éx éx'
¢f ou_ lu
a0 o
SO
o .o
E—la—x-. (8)

Equation (8) is called the Cauchy—Riemann equation. In elementary function
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theory one shows that the solutions, called holomorphic or analytic functions
of z = x + it, are infinitely differentiable. Moreover, if p € Q¢, then f is equal
to the sum of a convergent power series in = — p,

0

f= Zo a,(z - p), |z — pl < dist(p, cQ¢).

Differentiating term by term shows that the converse is also true, that is,
convergent power series in = — p are-solutions.

Theorem 3. u € C'(Q) satisfies u, — iu, = 0 if and only if it defines a holo-
morphic function on Q.

Next consider the initial value problem u, ~ iu, = 0, u(0, ) = g. If there is
a solution on a neighborhood of (0, x), then u is holomorphic. Thus

u= z an(: - ‘_Y.)"o
SO
g= Z an(x - .!)u‘

is given by a convergent power series. Such a function is called real analytic.
Conversely. if g is real analytic at x then the above formula dcfines » holo-
morphic near x + 0.

Warning. If the a, are complex, such real analytic functions need not be real
valued. They are defined on a real domain, hence the name.

Theorem 4. The initial value problem
u, + iu, =0, u(Q, -) = g(-)

has a C! solution on a neighborhood of (0. X) if and only if g is the restriction
to R of a holomorphic function defined on a neighborhood of x. that is. if and
only if g is real analytic at x.

As a consequence, we see that if g is C* but not real analytic at x, then the
approximation scheme 2, 4 cannot converge to a solution of the initial value
problem on a neighborhood of (0, x). It is not difficult to show that one does
have convergence for real analytic g.

Summary

(i) For c € R, the initial value problem is nicely solvable.
(ii) For ce C\R, u, + cu, = 0 has only real analytic solutions. The initial
value problem is not solvable unless the data are real analytic.
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(ii)) For c € R the equation is hyperbolic. For ¢ € C\R, it is elliptic. These

terms will be defined later and describe two of the most important classes of
partial differential equations.

PROBLEMS

[

If c € C\R. g € C'(R), then the initial value problem
u, +cu, =0, u(0, x) = g(x),

has a C? solution on a neighborhood of the origin if and only if g is real analytic
on a neighborhood of the origin.

Prove that if c € R and u is a C'(R?) solution of the equation s + cc,u = 0, then
{(t, x) € R?: u € C* on a neighborhood of 1, x}

is a unton of rays.

DiscussioN. This elementary result is typical. Solutions of partial differential equa-
tions inherit a great deal of structure from the equation they satisfy. This result
asserts propagation of singularities and propagation of regularity along rays.

Prove that if u € C*(R?)satisfies ¢,u + ¢¢,u = 0 with c real, and k is a nonnegative
integer, then
{(t. x): u vanishes to order k at (¢, x)}

is a union of rays. For any closed set I < R* which is a union of rays, prove that
there is a u as above such that I is exactly the set where u vanishes.

Discussion. Contrast this to the case where ¢ is not real. Then, if a solution vanishes
on any open set it must vanish ideatically.

Show that for ¢ € R and fe C'(R?) there is one and only one solution to the initial
value problem

u, + cu, = [, u(0, x) = 0.

Find a formula for the solution. Find an f€ C'({R?) such that the solution is not in
C*(R?).

Discussion. This may be surprising since “first derivatives in C' indicate ue C*".
However, the partial differential equation contains only a linear combination of
first derivatives. Nevertheless, when ¢ € C\R the equation is elliptic and, in a sense,
controls all derivatives. In that case, u, + cu, € C* implies that ue C*. Also u has
one more derivative than u, + cu,, but not in the sense of the classical spaces C*
(see Propositions 2.4.5 and 5.9.1, and Problem 5.9.3).

. For the nonlinear initial value problem,

u+cu, +ut=0 ul0x)=g(x), ceR

show that if g € CP(R), g not identically zero, there is a local solution ue C*
({—90 <t <&} x R) but that the solution does not extend to a C* solution on all
of R.

Discusston. This blow-up of solutions is just like that for the nonlinear ordinary
differential equation dy/dt = y*. Nonlinear partial differential equations have more
subtle blow-up mechanisms tco. Se¢ the formation of shocks discussed in §1.9.
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§1.2. The Initial Value Problem for
Ordinary Differential Equations

Many of the first steps in studying the initial value problem have direct
ancestors in the theory of ordinary differential equations. For that reason, we
begin with a quick review. Consider an ordinary differential equation of order
m solved for the derivative of highest order

- du(t) d™ " 1u(r)

a-t-m‘u(t) = G(f. U(f), '-EE—,..., W ;
Simple examples from applications are the equation du/dt = au modeling
radioactive decay if a < 0 and the Malthusian population explosion if a > 0.
Equally elementary is the equation of the damped spring

(1)

mu” +au' +k*u=0, mk>0 and a=0.

More generally, Newton’s second law of motion reads
mu” = G(t, u(1), u’'(1)),

where we have supposed that the force on the particle at time ¢ is determined
by ¢ and the position and velocity of the particle. A complicated example is

u" = ((1 + )P

The equation for population growth or radioactive decay has solution u =
u(0) exp(at) which is uniquely determined once the initial state is known. For
Newton's law initial position and velocity are required. More generally, the
correct initial value problem is the following.

Cauchy Problem. Given u,, u,, ..., 4,-, € R find a solution u to the ordinary
differential equation (1) which satisfies the initial conditions

d’u
2?3(0)=uj' j=01,....m- 1. ()

That it is reasonable to expect to determine u is indicated by the following
calculation of Cauchy. Given the initial conditions one computes

d™u
"dF(O) = G(O. uo, ceosy un_l),
thus, d"u/dt*(0) is determined for v < m. Inductively, we determine all deriva-

tives at ¢ = 0 as follows.
Differentiate (1) k — m + 1 times to find

dl*l d k~m+1l
F# = (2;) G(t, u,..., u"1),

Using Leibniz’ rule shows that the right-hand side is afunction G (¢, u, ..., u™).
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Suppose u'"(0) is determined for v < k,k > m — 1. Setting t = 0 determines
u™**0) = G,(0, u(0), ..., u™(0)) completing the induction.
Once u'"(0) is determined for all v, then

is a good candidate for a solution if the series converges. At any rate, it is the
Taylor series of any infinitely differentiable solution.

ExampLE. Consider the initial value problem for a hard spring
W' —u=0, w0=1 (0 =0.

To find the Taylor series at t = 0, compute

u = u’, @t=0Q, u’(0) = 1.
u” = (3 = 3uiu’, @t=0, u”0) = 0.
M = (3utn’) = 6u(w) I, @ir=0. u*0)=23.
uzxl +f—;+%"—4+-“.

Recall that a C* function defined on an openset in K¢ is called real analyiic,
if on a neighborhood of every point it is equal to the sum of its Taylor series.
We denote by C9(Q) the class of real analytic functions on Q. Since the Taylor
expansion of a C* solution is uniquely determined. we have the following
uniqueness result in the rcal analytic category.

Theorem 1. If G is infinitely differentiable, then the initial value problem (1), (2)
can have at most one real analytic solution.

EXAMPLE. ITm = 1, G = G(1) € C*, but is not real analytic at t = 0, then
du
dt

does not have a solution given by a convergent power scries. since if it did
then G(1) = du/dt would be given by a convergent power series. An example

is given by 1
=~/
Glr) = {e ., >0,

= G(1), u(0) = uy,,

0, t <0.

Cauchy’s algorithm yields u"(0) = 0 for all v > 0, so the Taylor series con-
verges but not to a solution. If one chooses G € C* with divergent Taylor
series, then Cauchy’s recipe will construct a divergent power series for u. For
real analytic data, we state Cauchy’s positive result.
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Theorem 2 (Cauchy). If G is real analytic on a neighborhood of (0, ug, ..., Uy, ),
then the Taylor series computed above conterges on a neighborhood of t = 0 1o
a real analytic solution to the initial value problem (1), (2).

A second approach to constructing a solution is to march forward in time
in steps At = h,and then take the limit h — 0. More precisely, given h > 0, let

nh, n=01,....

With h fixed we construct an approximation to u(nh). At the same time, we
construct approximations to the derivatives unh)forv=12,...,m—1.
The notation U is used for the approximation to u*(nh). The values of U,
are computed from the values of Uy according to Euler’s scheme:

ln

Y= Ul + hU*, vsm-— 2
umyt = UM + kGG, U2, ..., URTY).
The last expression comes from the approximation
u™(nh) = G(t,, Wo(nh), ..., u™ ' (nh)) = G(t,, U2, ..., UP"").

Note that to continue this process one needs to know that ¢,, U?, ..., U™
remains in the domain of definition of G. Thus, the U may only be defined for
a finite set of n. For h = At fixed, let g,(t) be the piecewise linear function which
is linear one each interval [z, t,.,], and is equal to G(t,, U2, ..., U™~ ") at time
t,. Then g, is an approximation to u™(¢). Let I: C([0. o[ : R) - C'([0, <[ : R)
be the integration operator

Iy = J f(s)ds.
0

A reasonable approximation for u is then

m-1 (')0 v
wo = Y 2 + M.

One hopes or expects that, as h tends to 2ero, lim u,(r) exists and gives a
solution. Note that u, is defined on an h-dependent interval, so part of this

expressed optimism is that the interval does not shrink to {0} as h decreases.
In fact, all goes well.

Existence Theorem 3 (Peano). If G € C(Q), then there exists T >0 and a
sequence h, — 0 such that, as n - oo, u, (t) converges in C*({0, T]:R) to a
solution of the initial value problem (1), (2).

To guarantee uniqueness of solutions, G must be more regular. Lipshitz
continuity as a function of its arguments is sufficient.

Uniqueness Theorem 4 (Picard). Suppose Q is an open neighborhood of
0,ug, ..., Up-y)inR™"*1 and G € C'(Q).If uand v € C*([0, T} : R) are solutions
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of the initial value problem (1), (2), then u = v provided that {t, u, u'", ..., u'™™V)
and (t, v, o'V, ..., "™ W) lieinQfor0<t< T.

Picard proved both existence and uniqueness in this setting by recasting
the initial value problem in the form of a fixed point equation, Mu = u, where
M is the operator

Mu(t) = "'il u(0)e”

0 v!

+ I™(G(t, (1), ..., ™" L(D))).

Picard’s proof marked a watershed in the theory of differential equations as
it established existence and uniqueness in cases where no reasonable formula
for a solution exists. His argument s a model for all later results. Existence is
proved by demonstrating the convergence of a sequence of approximate
solutions, called *Picard iterates™. These are defined by u,,, = Mu,. This idea,
called fixed point iteration, is an eflective numerical method, though for this
initial value problem there are much better techniques. Picard’s proof is now
the industry standard and can be found in many texts on ordinary differential
equations as well as in Picard’s elegant Traité d’Analyse [P).

Euler’s method relies on a finite difference replacement of the differential
equation based on

™ e, ) — w1,

h

J
!U(fn-vl)“‘u (t")guj“(t,). j=0. ,....m—2.
h
Experience from §1.1 should have left you wary of such algorithms, but in this
circumstance, it converges to a solution (see Problem 2).

When G € C!, the error in Euler's method is O(h) in C™ norm. Proofs can
be found in texts on numerical analysis which address the approximate
solution of ordinary differential equations. The best approximate methods are
refinements of Euler’s method. One can also find in such texts a discussion of
fixed point iteration, as a method for solving linear and nonlinear equations.

= u™(t,) = Gt u(t,) ..., u™ (L)),

PROBLEMS

1. Show that the initial value problem (u')? — u’ = 0, u(0) = 1, has exactly two real
analytic solutions on a neighborhood of ¢ = 0.
DiscussioN. This sort of problem, in the partial differential equations category, is
the subject of §1.4.

)

For the two simple initial value problems

(i) u’ = g(t) u(0) =0, g e C(R),

(i) u' = u,u) =1,

venify that the approximations defined by Euler’s scheme converge uniformly on
[0, 1] to a solution.
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§1.3. Power Series and the Initial Value Problem
for Partial Differential Equations

Our goal is to investigate through two examples the partial differential equa-
tion analogue of Cauchy's Theorem. The upshot is the theorem of Cauchy-
Kowaleskaya.

ExampLE. Consider the initial value problem
u, —iu, =0, w(0, -) =g(-), (1)

which we know from §1.1 cannot be solved unless g is real analytic. Neverthe-
less, for any solution, the differential equation and initial condition determine
&iétu(0, 0) and therefore the Taylor series

- 'q‘.
ol,"x u(ov 0) lj. k

L

To see this. observe that
u, = iu,,
U, = i€, Cu = iC,ic,u.

didty = (iE,Yéte,

dx

,'J'gu'ﬂ)(o) _
U~ Z _TE'—-_ f,xk.

j+k
¢/ u(0,0) = i/ (i) g(0),

The Taylor series for g is Y ¢/(0)x//j!. 1f it converges for |x] < R, then
|g/(0)| R¢/j! < C. Thus, the series for u is dominated by

(j + k) k
2 j' k!

fj

R

X

Rl

In Problem 2, you are asked to prove that this series converges on a neighbor-
hood of (0, 0), reproving the existence part of Theorem 1.1.4.

Proposition 1. If g is real analytic at %, then the initial value problem (1) has a
unique real analytic solution on a neighborhood of (0. X).

Virtually the same argument works for u, + cu, = 0 for any ce C.
For partial differential equations there is a wide variety of “mixtures™ of
orders corresponding to the large number of distinct partial derivatives. Here
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are some examples:
Uy + u,, =0, Laplace’sequation,
u, =0, 45° wave equation,
Uy + Uyree =0,  linearized beam equation,
U —u,, =0, heatequation,

U, —u, =0, sideways heat equation.

To make it easier to manage the bookkeeping of the possible partial deriva-
tives we use the multi-index notation of L. Schwartz. For x € N*.

e - (T (- ()
~\ox,"ox;" M ax,) T \ex, ) \ax, éx,)

X =%, Xpy o, X)) = XL xde,

a=ala...a,l where O!'=1,

lxl =l ] + oo + -+ + Ja,l.
ExaMPLES. 1. The most general partial derivative of order m is ¢ la)l=m.
Equality of mixed partials is assumed here.

2. The most general linear partial differential operator of order m with
constant coeflicients is

) a,i*  a,eC.
Islsm
The principal part, consisting of terms of order exactly m.is the sum over terms
with |2| = m.

3. Taylor's series in several variables takes the clegant form

f)~T ¢ f(é):: -

4. The most general partial derivative of order m in t and x is é’é? with
J + |2l = m. Equivalently, itis(¢,, ¢,) with 8 an N! *!multi-index with (B} = m.

For a partial differential operator of order m in 1, the derivatives which
occur are &/87, j < m. The highest time derivative possible is ¢,”. In analogy
with equation (1.2.1), we begin by considering a partial differential equation
which is solved for this highest derivative. The equation then takes the form

Ou = G(t, x,8/0%u; j < m - 1). (2)

The notation means that G is a function of the variables t, x and the partial
denivatives of order < m — lint.
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ExAmPLE. The operator u,, = 0 is not of the form (2), but u, = u,_ is.

Proposition 2. If u is a smooth solution of a pariial differential equation (2), then
knowing

al'u(o’ ‘)=gv(.)$ v=0‘ l....,m-’ l’
on a neighborhood of 0 € R¢ determines all the dericatives of u at (0, 0).

Proor. From the initial data compute 4,"¢u(0, ) = d3g(-)for0 < v< m —~ 1.
If kK > mand g¢iu(0, ‘) is known for v < k — 1 and all a, then

3*o%u = E "G, x, &3oTus j < m — 1))
= Gyolt, x, 0)02u;j < k - 1).

When ¢t = 0, the arguments of G, are known on an R? neighborhood of 0 by
the inductive hypothesis. 0

We have seen by example that:

(1) For real analytic ordinary differential equations with real analytic data
the Taylor series converges (Cauchy's Theorem).

(2) For the same class of equations, the series need not converge if the data
are not real analytic.

(3) For (¢, — ic;)u = 0, real analytic data yields a series which converges.

This leads naturally to the question: Does the Taylor series of u always
converge if G and g, are real anaiytic?

ExampLE (The Heat Equation). This is one of the fundamental partial differ-
ential equations of mathematical physics. In addition, it is the equation which
guides our intuition about the class of parabolic equations.

We begin by presenting a derivation based on physical arguments. Suppose
Q < R? is occupied by homogeneous (= local physical properties translation
invariant), isotropic (= local physicai properties invariant under rotations),
materials like air, water, jello, steel, etc. Let u(t, x) denote the temperature at
time t and place x € 2. The second important physical quantity is the heat
current, J(t, x), which gives the direction and speed at which heat is flowing

at the point (¢, x). The interpretation of J is that the flux per unit time through
a piece of surface X is
I J-ndA.
z

Thus, the rate, per unit time, at which heat leaves a volume V is [, J - n dA.
Using the Divergence Theorem yields

Fluxoutof V = ,!-ndA--J‘ div J dx.

v | 4
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Two simple physical laws lead to an cquation of motion for u.

The first fundamental law asserts that heat lows from hot to cold at a rate
proportional to the temperature gradient. Thus the vector heat current is given
by

J = heat current = —k grad, u.

The proportionality constant is called the heat conductivity.
The second law expresses the idea that a small volume. V, of material heats
up by an amount proportional to the quantity of heat which flows into it

c i,_‘:ww ~ rate at which heat flows into 6V,

where ¢ is called the heat capacity per unit volume. Summing over small
volumces comprising V yields

cu
—I C—z- dx = rate at which heat flows out of V.
b C

Using our expression for the flux out of V' yields

I (dw.l-l-c——)dt—O
" ct

for ali nice subsets V < Q. It follows that we must have cé,u = —div J
throughout Q. Using the formula for J yiclds

¢ %‘ = div(k grad u).

If k is constant this simplifies to

2
cu,=kzg-€;§kAu.

Thus with v = k/c, we have u, = vAu.

In many problems the hypothesis that ¢ and k are constant is quite good.
In others they may depend on ¢, x, u or even the derivatives of u or the values
of u in the past (materials with memory). In any event, the case v = constant
is the starting point for any analysis.

The heat equation is not only of intrinsic interest but it serves as a test case
for the question raised above. Consider the one-dimensional heat equation
which is the equation for solutions u which do not depend on y, z, namely,
u, = vu,,, x € R. The initial condition is u(0, -) = g. The derivatives of u at
t = O are computed as follows:

Uy = VlUygs @‘ =0, = VYxxo
Uy = YUy = vzuxxxx’ @t =0, = (vaxz )29'

éhelu(0, ) = (vegY'(é,.Y 9 ().
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The Taylor expansion is

va Y (3, V2 g(x
) =Z(' ,){('f): g(x)
JiJa:
This will usually not converge even if g has convergent Taylor series. The cause
of the problem is that the coeflicient of the jth power of t contains a derivative

of order 2j of g. Problem 4 gives an example.
We have seen two “obstructions™ to convergence:

th(x — XY

(1) If etther G or g; is not real analytic, then the series need not converge.

(2) If the partial differential equation is not of highest order in ¢, that is, &
is not the highest-order derivative that occurs, then the series may not
converge.

If neither obstruction is present, the series does converge. This is the celebrated
theorem of Cauchy-Kowaleskaya. The theorem concerns the initial value

problem
{6,"'14 =G X, FEu,0<j<m— L1j+ 2| <m), G

Efu(O,:):gj(-), O0<j<s<m-1\.

Theorem 3 (Cauchy-Kowaleskaya). Suppose that g; is real analytic on a
neighborhood of x € R and that G is real analytic on a neighborhood of

0, x &/éigixyj<m— Lj+ || < m)

Then there is areal analytic solution to (3) defined on an R, x R4 neighborhood
of (0, xX). The solution is unique in the sense that if u and v are real analytic
solutions of (3) defined on a connected neighborhood of (0, x), thenu = r.

Proor. We have seen that (3) determines all the derivatives at (0, x) of any
solution. Thus, two real analytic solutions must agree to infinite order at (0, x),
and therefore must agree on any connected open set containing (0, x) on which
they are real analytic.

For the existence proof, one shows that the Taylor series computed above
converges. Cauchy’s method of majorants yields an elegant though lengthy
proof. See the texts of Folland [Fo], Garabedian [Gara), or John {J] for
details. The method of proof is, in my opinion, atypical within partial differ-

ential equations and if one is forced to omit things from a short introduction
here is one place to start. O

ExampLEs. The theorem applies to the first four equations but not to the last
two:

u, +iu, =0, Cauchy-Riemann equation,
u, + Au =0, Laplace equation,

u, — Au = 0, waveequation,
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Uy, + u, =0 sideways heat equation,
u, —vu,, =0, heatequatian,

Up + Upgrr, = 0, linearized beam equation.

PROBLEMS

1. Prove the following elegant identities involving multi-index notation:

m! x*
(xy + X3+ +x)"= ) —\
BI=m X.

- e (L &
(I —(x; +x3 4+ 4+ x,)) ‘=ZI-T.

2. For u, — iu, = 0, u(0, *) = g(-), g real analytic at zero. the Taylor series for u was
dominated by

(j + k) (Bt¥(Bx)

‘L

Show that this power series converges on a neighborhood of (0, 0). Prove that u.
given by its convergent Taylor series. solves the initial value problem.

3. Consider the heat equation, ¥, = vu,,. v > 0, with initial value g(x), a polynomial
in x. Show that the Taylor series solution u hasradius of convergence R = x. Show
that for each ¢, u is a polynomial in x. Is u polynomial in t?

4. Fortheheatequation,u, = vu,,, v > 0, with real analytic initial data g(x) = 1. (1 — ix).
show that the Taylor series

(C,..y'u(0, 0)(t. x)*
Z x!

. 2eN x N,

converges for no t, x with ¢ # 0.

5. Suppose that P(¢, ¢,) = &™ + 3 A(E,)é™" 7 where the A's are constant coefficient
differential operators of any order. Generalizing Problem 3, show that if g,(x) is a
polynomial in x for 0 <j< m— 1, then the initial value problem Pu =0,
¢/u(0, ) = g(-). j £ m — 1, has a unique real analytic solution u defined on all of
R, x R!. Is u polynomial in ¢?

Discussion. If P is of order higher than m, then this solution will not be unique in
the C* category (see Problems 1.7.1 and 1.7.2, and §3.9). This is in contrast to
Holmgren’s Theorem to be studied shorily.

6. Use the Cauchy-Kowaleskaya Theorem to show that the initial value problem
wu, = f(t, x, u), u(0. x) = g(x),

has a real analytic solution on a neighborhood of (0, 0), provided that f is real
analytic on a neighborhood of (0, 0. g(0)) and g is real analytic on a neighborhood
of 0, and g'(0) # 0.

Construct an example with g°(0) = 0, g"(0) # 0, g and f real analytic, and such
that the initial value problem does not have even a C! solution on a neighborhood
of (0, 0).
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7. Show that if the initial value problem u,, + u,, = 0, u(0, *) = 0, 4,(0, -) = f(-) has
a C? solution on a neighborhood of (0, 0), then f and u must be teal analytic on a
neighborhood of (0, 0). Hint. Use the Schwarz reflection principle and the fact that
harmonic functions are real analytic. For harmonic functions on R?, this can be
proved by constructing a harmonic conjugate v satisfying dv = u, dx ~ u, dt. Then
u + iv is a holomorphic function of x + it, so its real part is C*.

§1.4. The Fully Nonlinear Cauchy—Kowaleskaya
Theorem

The previous section was devoted to the Cauchy problem for nonlinear
equations of order m which are solved for & in the sense of (1.3.2). The generai
case presents some additional phenomena.

ExaMPLE. For ¢, x e R x R, consider the initial value problem
ul+ui=1  u0. )= g(-)real valued.
First, observe that at ¢ = 0
u(0. ') = 1 — g3(°). (h
If one seeks a real valued solution one must have |g’| < 1. For complex
solutions this constraint is not needed.
Second, note that (1) does not determine u,. For ,(0, 0) there are two
possibilitics
ut(0$ 0) = i“ - gx(O)Z)lIZ.
Once the value of u,(0, 0) is chosen the rest follows, since near (0, 0) one solves
w+ui=1 u =ul0,0),
uniquely by
u = +(1 — ul)!, + following the choice at (0, 0).
Then the Cauchy-Kowaleskaya Theorem of the last section applies provided
(g.)* # 1. One finds two solutions. They are real if |g°(0)| < 1.
Consider next the general nonlinear equation of order m, where the deriva-
tive & plays a distinguished role
F(t,x, 8™u, 8/¢%u;j<m—1,j + |al <m)=0. (2)

Once 3/u(0, ) = g;(x) for j <m —~ 1 are known, §"u(x) must be determined
by solving the nonlinear equation

Fit, x, 07w, 35g)) = 0.
As in the above example, there may be several solutions. Suppose that y is a
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solution at (0, x)
F(O, x, v, 89,()) = 0. ()

To solve (2) for o™u with &™u ~ y near (0, x), the Implicit Function Theorem
shows that if

d
5.; F(00 X, S, a:g'[(;!))ll"v # 0’ (4)

then fort, x ~ 0, xand G™u ~ 7, (2) is equivalent to

. o"u =G(t,x,8/%u;jsm—1,j+ |a| <m)
with G real analytic if F is. The result of the last section immediately gives the
fully nonlinear version of the Cauchy-Kowaleskaya Theorem.

Theorem 1 (Cauchy~Kowaleskaya). Suppose that F and g; are real analytic
near (0, x, 7, ¢29,(x)) and x, respectively, and that 7 is a solution of (3). If in
addition (8) is satisfied, then, on a neighborhood of (0, x), there is areal analytic
solution u to (1) with

c/u@,)=g(-), 0O0<jsm-—1,
and

&u(0,0) = ¢ (5)

Two such solutions defined on a connected neighborhood of (0, x) must be equal.

The condition GF/¢(¢™u) (0, x, &™u(0. x). &/¢F u(0, x)) # 0 is very impor-
tant. When it holds we say that the surface t = 0 is noncharacteristic at (0, x)
on the solution u of the partial differential equation F = 0.

The rest of this section is devoted to discussing several interpretations of
this condition.

ExampLes. 1. For the equation xu, = u;, the surface 1 = 0is noncharacteris-
tic at all points (0, x), x # 0.

2. For the equation u? = u?, the surface t = 0 is noncharacteristic on the
solution u at all x such that (0, x) # 0.

3. For the equation uu, = u2, the surface ¢ = 0 is noncharacteristic at (0, x)
on the solution u if and only if u(0, x) # 0.

4. If F is a linear partial differential operator

F= Y a,tx)e30u - [t x).
lal+jsm

Then @F/é(é™u) = a,, o(t, x) the coefficient of ¢", and

F = a, o(t. x)¢* + terms lower order in é,.
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The noncharacteristic condition is then that a,, 5(0, x) # 0, in which case it is
obvious that one can solve for ™. In the linear case, the condition depends

only on the equation and not on the solution. No Implicit Function Theorem
is needed.

5. Even more special is when F is lincar and of order m = 1,
F = agdu + ) a;0u + dbu —f(t, x).

The noncharacteristic condition is ag # 0. If ay, g; are real, this is equivalent
to the condition that the vector field aod, + Y a;; is transverse to {t = 0}
(Figure 1.4.1).
In the real noncharacteristic case, we can find C* solutions of the initial value
problem
F = agdu + Y a,0u + bu— f(t, x) =0,

4(0, -) = g(*),

for arbitrary f, g € C*, k = 1. The proof is by integrating along the integral
curves of agd, + 3 4;d;. These are the characteristic curves and thisis a simple
case of the method of characteristics, generalizing the analysis of §1.1.

In the complex case, for example, d, — id,, we have seen in §1.1 that real
analyticity is indispensable for the solution of the initial value problem.

The surface ¢ = 0 is characteristic at (0, x) if and only if a, = 0. In that case,
the partial differential operator involves only differentiations parallel to the
initial surface and the equation. The differential equation, restricted to t =0,
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yields
Y a,dg +bg =1,

which is a condition on the initial data for solvability. The partial differential
equation together with the Cauchy data do not determine d,u(0, -), so that
you cannot march forward in time.

The noncharacteristic condition takes an elegant form in terms of the
linearization of F at u. For simplicity of notation incorporate the time variable
in x, thus x = (x,, X,, ..., X4) with x, = t. The differential equation (2) takes
the form F(x, 6%u; || < m) = 0. Seek a solution u + du close to a given solu-
tion u. Taylor’s Theorem yields

F(x,8%(u + ou)) = F(x, %) + ) ag:u)&’(éu) + O((6u)?).
Let
_ ©OF 8
a,(x) = N a.u)(x. ¢"u(x)). (6)

We are led to the equation P(Su) = 0, where P = ) a,(x)é* is the linear
operator with coeflicients a,.

Definition. If F(x, ¢%u; || < m) =0, the linearization of F at u is the linear
partial differential operator P(x, d) = ) a,(x)é".

If P(x, d)v = 0, then
F(x, 3’(u + v)) = O(v?),

and _
F(x, ¢%(u + ev)) = O(e?).

Thus u + ¢v satisfies the equation F = 0 to first order. Equivalently, u + ¢v
is a solution in first-order perturbation theory (see also Problem 1). The
equation Pv = 0 is sometimes called the equation of variation or perturbation
equation.

These ideas are now illustrated with the inviscid Burgers equation

u, + uy, = 0.

This equation, for real valued u, arises in the study of the motion of fluids of
very small viscosity. Air and water have small viscosity compared to honey
and molasses. The linearization is the partial differential operator P defined
by Pv = (6, + ud, + u,)v (Problem 2).

Suppose that u is a solution of the inviscid Burgers equation, and consider
the perturbed initial value problem

u, + uu, = 0, u(0, x) = u(0, x) + ep(x),

then a first approximation is given by u + ¢v where v satisfies the pertubation
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equation
v, +ur, +ut =0, (0. x) = ¢(x).

This linear equation is much simpler than the nonlinear Burgers equation. In
fact. along each integral curve of the vector field. ¢, + uc,, it is a linear ordinary
differential equation for ¢.

For example. if u = c € R, then the perturbation equation is exactly the
simple equation r, + cr, = 0 from §1.1 and r = ¢(x — ct). To first order in
¢. small perturbations of real constant solutions are rigidly propagated at
speed c. These small linearly propagating disturbances are called sound waves
(Figure 1.4.2). Eventually, nonlinear eflects predominate and this lineared
approximation is inappropriate.

If u is a solution of the inviscid Burgers equation, then a C' curve T is
characteristic at p e I" if and only if the vector field &, + uc, is tangent to I at
p- [ i1s called a characteristic curve if it is characteristic at all points. These are
the same curves along which ¢, from the previous paragraph, satisfied an
ordinary differential equation. They will reappear in §1.6.

For such a curve, the differential equation u, + uu, = 0 implies that « is
constant on all components of I". Suppose that I" is connected. The vector
field ¢ + uc, is then constant along I' and also tangent to " which implies
that I' is a straight-line segment. These remarks will permit us to describe
nonlinear effects alluded to two paragraphs back (see §1.9).

The last two conditions of the next theorem give coordinate invariant
versions of the noncharacteristic condition.

Theorem 2. The following are equivalent:

(i) {t = O} isnoncharacteristic at (0, x) for the solutionu 1o F(x, 3*u; || < m) = 0.
() {t = O} is noncharacteristic at (0, x) for the linearization of F at u.
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(iii) For any function y(t, x) with (0, x) = 0, for x near x and 3,¥/(0, x) # O, the
linearization P(x, ) satisfies P(y™) # 0 at (0, x).
(iv) For any  as in (iti)
lim

Ad~*+

e-ilwp(x‘ a)(eili)

0, ¥ # 0. (7

Prook. Since the coefficient of &™ in the linearization is a,, o = 0F/¢(6"u), the
equivalence of (i) and (i1) is immediate.
Since &/(¥(0, -)™) = 0ifj <m — 1, we have

Py™ = m! a, o(¥,(0, *))". ®)
The equivalence (i) < (iii) follows.
Finally,
P(e'*¥) = (i2)"e'Y |2" a; YW, .. W )+ 0™
jvizimm
For our ¢ all the y, = 0 at (0, x), whence
P(e**)(0, x) = (i4)™e'**a,, o(0. X)¢,(0. x)" + O(2™~"). 9)
The equivalence of the previous conditions with (iv) follows. 0O

The formulas (8), (9) show that if (iii) or (iv) holds for one such ¢, then 1t
holds for all of them.

PROBLEMS

1. Suppose that / is an interval in R, 0 € /, and that u(o. x) is a smooth one-parameter
family of solutions of F(x, ¢fu: |x| < m) = 0, that is, F(x, ¢#u(s. x)) = Oforallo e .
Let P be thelineanzationof F atu(0, -)and letv = cu’'¢a(0, -). Prove that P = 0.
DiscussION. Since u(a. x) = u(0, x) + ot + O{s®), we see for the second time that
the lincarization describes first-order changes in solutions of F(x, éfu) = 0.

2. Show that the linearizations of u, + uu, =0 and u, + (u,)* =0 are Pv =G +
uc,v + u,vand Py = &t + 2u,C, v, respectively.

3. Consider again the initial value problem u, + uu, = 0. u(0. x) = ¢ + ep(x). We
found u + er which satisfied the initial condition and u, + uu, = o(¢) Find a
corrected expansion u + &v + e2w which improves the error to o(s?). Hint. Plug
u + ¢r + 2w into the equation and set leading terms in € equal to z¢ero. This gives
an independent derivation of the perturbation equation at the same time.
Discussion. This is an example of higher order perturbation theory.

§1.5. Cauchy—Kowaleskaya with
General Initial Surfaces
1n many situations, initial value probiems are natural but a distinguished time

variable ¢ is not available. For example, the wave operator 83 — 8} — 93 — 93
is Lorentz invariant (§4.6 begins with a discussion of invariant operators).
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Here, planes ) a,x; = O are candidates for initial hypersurfaces with corre-
sponding time variable ¢ = Y g,x,. All planes with a} — a} — a3 — a > O are
equivalent by Lorentz transformations. The principle of special relativity
implies that all such time functions should be treated on an equal footing.
For nonlinear t(x,, ..., X,), the condition becomes (3pt)? — (,¢)? — (3,0)* —
(652)* > 0,and the equivalence of all such is in the spirit of general relativity.

Another example arises in searching for isometric embeddings M, — R’
of a Riemanian two-manifold M of negative scalar curvature (Spivak, [Sp]).
One solves an “initial” value problem on the manifold but there is no natural
time variable or initial curve. These examples suggest the importance of the
following.

Problem, For a partial diflerential equation of order m
F(x, ¢*u; [a] < m) =0, (1)

and a smooth hypersurface, X in R¢ study the Cauchy problem with initial
data given on X.

As one no longer has a time, i, it is no longer reasonable to prescribe é/u,
0 <j < m— L If there were a distinguished variable 7, the data ¢/u(0, ) =
gi(:) 0 <j <m— 1, would determine all derivatives of u of order < m — 1.
Thus one could hope to give as data all derivatives of u up to order m — |
along the surface Z. However, the functions ¢%uj; = g, are not independent.
There are compatibility conditions. For example, if Z = {x, = 0} and a =
O, a5, ...,a,)and |a + Bl < m — 1, then 6*(¢’u|¢) = 8**Pu|,.

A common formulation of the Cauchy problem involving the “normal
derivatives” (¢/énYuly is not correct (see Problem 1).

A good way to account automatically for the compatibility relations among
the denivatives is to ask that the derivatives of u be equal to the derivatives of
a given function.

Given an m — 1 times diflerentiable function v defined on a neigh-
borhood of Z, find a solution u to (1) such that

u=0% onk foralliaj<sm~1. (2)

Knowing all the derivatives of order < m — 1 determines alf but one of
the derivatives of order < m. If £ = {x, = 0} the missing derivative is d{"u.
For nonlinear problems, one must supply that additional derivative at one
point of I as in the Cauchy-Kowaleskaya Theorem (1.4.1). The general case
follows that pattern once the notion of noncharacteristic is defined.

Definition. The linearization of F at a solution u to F(x, d%u; Bl S m) =0 is
the linear operator

P=Y a,(x)é*, a,x)= oF

8(0%)

Definition. If F(%, 3’u(x); || < m) = 0, then the hypersurface £ is nonchar-
acteristic for F on uat x, if and only if the following equivalent conditions hold:

(x, 3’u(x)).
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(A) For any real valued C* function W defined on a neighborhood of ¥ with
Y|y =0,dy|; # 0, we have PY"(X) # 0.
(B) For any ¥ as in (A)
. e"P(x, d)e't?
hm

A= ;.ﬂ

#0 atx.

Remarks. 1. dy = ¥ (8¢/dx)) dx; is the differential of ¢.
2. 1f (A) or (B) holds for one ¥ it hold for any such (exercise).

3 To check if £ is noncharacteristic at ¥ it is sufficient to know ¢*u(x), for
all |x| < m. One does not need to know u on a neighborhood of ¥.

4. In the special case £ = {t = 0}, (A) and (B) become conditions (iii) and
(iv) of Theorem 1.4.2.

Theorem 1. Suppose that:

(1) €€ £ < R! and X is a real analytic hypersurface;
(2) v is real analytic on a neighborhood of X € R?, and that F(X, ¢Pr(x)) = 0on
z;

(3) Z is noncharacieristic for F onv at X;
(4) F is real analytic on a neighborhood of (X. £%¢()).

Then there is a u, real analytic on a neighborhood Q of X. such that
F(x,0%u(x))=0 in&Q,
&MU gaq = CClgag  Jorall |al<m -1,
Q*u(X)=¢*'%(x) forall |x|=m,

Two such solutions defined on a connected neighborhood of X must be equal.

PRroOF. Introduce new real analytic variables so that £ = {t = 0}. Theorem
1.4.1 immediately implies the above result, once one notes that the hypotheses
of Theorem 1 are expressed in a coordinate independent way, and that they
reduce to the hypotheses of Theorem 1.4.1 incoordinatesso that 2 = {r =0}.

a

PROBLEMS

It is common to pose the Cauchy problem as follows:

Find a function u such that

j
F(x, u) =0, (a-%)u=gj on X, 0<jsm—1,

where g, are given functions on I, and 6/cn = Y n(x) é/0x, is the derivative
in the direction of the unit normal to Z.
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There are two serious problems with this formulation. First, in order to choose a
normal along X, one needs a Riemannian metric. More telling is that, even in the
Riemannian case, (3/dn)? is not meaningful. To see this, note that

(3 ndx)d/dx,)(Y. n(x)d/0x,)u

involves all of the partials of n(x). As n is defined only on I, only tangential derivatives
exist. Thus for some j, dn/dx, is not meaningful. One solutions is to extend the n,(x) so
as to define a vector field on a neighborhood of Z. The results depend on the extension.

1. Construct an example showing that the value of (6/0n)’u may be different for
different extensions.

A way to avoid both difficultics is to drop the idea of normal derivatives and settle
for differentiations transverse to Z (that is, nowhere tangent to I). This leads to the
following formulation of the Cauchy problem.

Given V, a smooth vector field defined on a neighborhood of (and transverse
10) Z, find a function u such that

F(x,é’s)=0, (VYu=g, onX, 0<j<m-1.

The next problem shows that this formulation is equivalent to prescribing consistently
all derivatives of order < m — 1. The present formulation is more appealing geometri-
cally, but requires a choice of ¥ which is not canonical.

2. Givenxe Zand gje C*(w),0 < j <m — |, w c T aneighborhood of x, prove that
there is a smooth v defined on Q and an R neighborhood of x so that (V)iv = g;
onZ N 0<j<m-—1 Show that the g, determine all the derivatives of ¢ up to

order m — 1 by proving that if w is a second such function, then *(v — w) = 0 on
Z N Q whenever ja| <m - 1.

3. Suppose that P(x, J) is a lincar partial differential operator with coefficients a,(x)
real analytic on a neighborhood of x. Suppose, in addition, that the principal part
at X, ) 1j=m 3,(X)3°, is nonzero. Prove that for any f(x) real analytic on a neighbor-
hood of x, there is a possibly smaller neighborhood Q of x and u € C*(Q) such that
Pu = { in Q. Hint. Show that there is a hyperplane which is noncharacteristic at x,
then solve an initial value problem.

Discussion. This result shows that linear P are locally solvable in the real analytic
category. In particular, this shows that there is no obstruction to the solvability of

Pu = f comparable, for example, to the condition dy = 0 as the solvability condition
ofdw = y.

It came as a surprise to the mathematical community when H. Lewy found, in 1956,

a P as above, such that Pu=f is not locally solvable at x for most J€C® (see
Garabedian [Gara] or Folland (Fo)).

§1.6. The Symbol of a Differential Operator

Given a solution of a nonlinear partial differential equation F(x, 3«; |8} <
m) =0, we have seen how to associate an mth order linear operator, the
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linearization of F at u. The recipe is

P(x,0) = Za.(X)a.,

oF
d(0%)

a,(x) = (x, 0%u(x)).

To P(x,?3) we associate a function P(x,ic) of x and € C¢, by replacing
(el' RN ) a‘) bY('én evsy ié‘)o

P(x, ie) = ) a(x)(i{)".

The function P(x, ic) is called the complete symbol of the differential operator
P(x, ). It is a polynomial in & of degree m whose coefficients depend on x. The
regularity of the coeflicients depends on the regularity of F and u. The reason
for the i will be clear later. Let

| 1
D,a?a,, Da?(é,,....a‘).
Then c,(x)D* has symbol ¢,(x)$*".

Definition. The principal symbol of P = ) a.(x)D"* is the function
Pux, &)= Y a(x)¢’,

lsi=m
P, is a homogeneous polynomial of degree m in §. One of the basic themes in
partial differential equations is to associate properties of the operator P(x, D)

with algebraic/geometric properties of the symbols of P which can in principle
be venified.

Examples of Symbols

Operator Principal symbol

d, + ¢d, it + ic§
A, BT S
u, — 4, —2+ 8+ + &

U,"'A, éi++{‘z

In proving Theorem 1.4.2(iv), we evaluated D*e"*®, noting that to get highest
order in 4 the derivatives must ailfall on the exponent. Thus, for smooth real ¢,

D*e'** = A“'e‘f"(-a—‘p-, ess ?—‘e-). + 0@ A*),
ox, dx,

This yields the fundamental asymptotic expansion.




§1.6. The Symbol of a Differential Operator 27

Theorem 1 (Fundamental Asymptotic Expansion). If ¢ is a smooth real valued
function, then as |A| = o0

d¢ 6@) .
-ilg o , 2™ . m~1
e “*P(x, D)e A"P, (x, > -——-ax‘ + O(A™"")

) (1)
= A™P,(x, do) + O(A""?).

This result shows that the principal symbol is particularly important when
considering highly oscillatory functions.

In new coordinates, y = Y(x), x = X(y), a linear partial differential operator
in 0, is transformed to a linear partial differential operator in J,. Precisely, if
u is a function of x, then ii(y) = u(X(y)) is the corresponding function of y.
Similarly, (Pu) o X is the function of y corresponding to Pu. Thus the operator
P viewed in the y coordinates is the map sending u o X to (Pu) o X. For ex-
ample, the operator J; viewed in the y variables is given by the familiar law

0 cy, ¢
0x; éx; 0y,
It follows that the map P viewed in the y variables is a differential operator
which we denote by P(y, D,).

EXAMPLE. A = 6} + &3 in polar coordinates r, 3 is equal to
|

1
- oré + -2 d3s.

The relation between P and P is

(P(x, D,)u) o X = P(y, D,)(u o X). 2)

Many interesting analytic properties of P have expressions which are in-
dependent of coordinates. For example,

“The Cauchy problem with data on X is solvable.”
“All solutions of Pu = 0 are C*.”

If we expect that these correspond to properties of the symbol, then the symbol
itself should have reasonable transformation properties under change of co-
ordinates. A natural question is What is the relation between the symbol of
the transformed operator and that of the original? Using formula (1) for
P_(x, doy) yields

—ide(x) ideix)
Pulx, dyp) = fim ST )

A= A. ’

o~ . . e"ip(y D )eiis)
Puly, dy9) = lim 22




28 1. Power Series Methods

Equation (2), applied with u = ¢‘4®, shows that the right-hand sides are equal at
corresponding points x and Y(x). We next interpret this important conclusion.

The differential do = ) (Ce/éx;)dx; is a one-form. Equivalently,
(Gp/5x,(x), ..., Bp/dx,(x)) transforms as a covector, that is, an element of the
dual, T*(R?), of the tangent space T,(R?). This part of advanced calculus is
sometimes unfamiliar. Here is a brief exposition (see Spivak [Sp] or Loomis
and Sternberg [LS] for detailed treatment). The goal is a geometric foundation
for differential calculus so that invariants under nonlinear coordinate changes
are easily recognized.

A tangent vector v to R¢ at x (i.e. v e T,(R’)) is visualized as a vector with
tail at x and/or as the tangent vector to a curve passing through x. The set of
all tangent vectors at x is called the tangent space at x and is denoted T,(R*).
The set of all pairs x, v with v e T(RY) is the tangent bundle T*(R?). Under a
change of coordinates, y = Y(x), v is transformed to the vector Y, v = Y'(x)v
with tail at Y(x), that is, Y, v € T,,,(R’). Here Y’ is the Jacobian matrix ¢y,/¢x;
of Y. The map x, vy, Y, v is the transformation law for tangent vectors. If
7(1) is a curve with $(0) = x, 7'(0}) = ¢, then Y(;(t))'|,-0 = Y, vis tangent to the
curve Yoy corresponding to 7 (Figure 1.6.1).

Yov
j'!(f) /y:_Y(\x)L Y(x)

¥ x = X(y)
Y(1(1))

x-space y-space
Figure 1.6.1

The differential of ¢ acts on tangent vectors by do(x)(r) = Z(Erp(x)/dx,)vj =
de(;7(1))/dt],-o. One can think of this as measuring the rate at which 3(¢) or
the vector v at x cuts the level surfaces of ¢ (Figure 1.6.2). The fact that do
transforms as a one-form means that computing d¢ in x coordinates on v
gives the same answer as computing d¢ in y coordinates on Y, v. This is clear
from the level surface interpretation. More formally, one has do(x)(v) =
d@(y(x))(Y,v) where = ¢ o X denotes the function corresponding to ¢ in
the y coordinates. Written out, the identity is

Co(x) cp())
> L ——

v, =
dx; "’ dy;

This can be verified by brute calculation using the chain rule. Alternatively,
note that p(7(t)) = ¢(Y(7(t)). Differentiating with respect tozat¢ = O provesit.
The set of all points ¢ in the dual of the vector space T,(R) is called the

(Y 0);.
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s (x)(w) > dg(x) v, in fact
O¢(x)}(w) = 0.25
o (x)(w)= 0.7

\

¢=25

Figure 1.6.2

cotangent space at x and is denoted T*(R‘). An element & e T*(R?) can be
visualized by imagining the level sets of ¢ which are a family of parallel
hypersurfacesin T, (R?) given by the equations £(v) = const. Then E(r) “counts
the number of level surfaces cut by ¢.” The set of all pairs x, & with & € T*(R?)
is called the corangent bundle T*(R?). The computations of the previous
paragraph show that the pair x, d¢(x) transforms as an element of the
cotangent bundle.

Just as the functions u, i take the same value at corresponding points x and
y, we have shown that the principal symbols of P and P take on the same
values at x, d,¢(x) and y. d,¢()) which are corresponding points of the
cotangent bundle T*(R?). This proves the following theorem.

Theorem 2. If P = P(x, D) is a linear partial differential operator defined in Q,
then its principal symbol P,, is a well-defined function on the cotangent bundle,
T*(Q).

To find P (¥, &) for %, & € T*(Q). one need only choose a real valued ¢ with
dop(x) = ¢. Then

-iig ide
Pu% D) = lim St (%),

A=

Note that this recipe does not depend on the particular coordinate system.
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Problem 4 shows that the full symbol, P(x. &), is not a function on the
cotangent bundle, T*(Q).

The condition for a hypersurface £ to be noncharacteristic takes an elegant
form in this invariant setting. Toward this end, recall a little geometry. HXis
a smooth hypersurface in R?, then T,Z < T(R’) is the set of vectors tangent
to T at x. Itis a d — 1 dimensional subspace called the tangent space to T at
x. Unless one chooses a scalar product, there is no natural notion of normal
vector. On the other hand, there is a canonically defined conormal space.

The idea is the following. If W is a linear subspace of a vector space ¥ then
the conormal space to W, denoted N*(W), is defined by

N*(W)={/eV:((w)=0forallwe W}

N* is the annihilator of W in the dual space V’. From the definition it follows
that dim(N*(W)) = dim(V) — dim(W) = codim(W).

The conormal variety to T at x, denoted N2(X), is the annihilator in T*(RY)
of the tangent space T,(Z). Thus dim(N*(Z)) = 1. The conormal variety to 2
is the union of these spaces

N*E)={(x, ) e T*(Q): x e L. e N} (T L)}

Thus N*(E) is a one-dimensional subspace of T,*(X). N*(Z) is a vector bundle
over T with one-dimensional fiber. A nonvanishing clement of NZ) is
called a conormal 1o £ at x. If o e C*(Q: R} and ¢}; =0, then for x € Z,
do(x) € N¥(ZX).

Recall that £ is noncharacteristic at x if for such a ¢ with dg(x) # 0,
lim e~“®Peié®/;™ £ 0 at x. That is. T is noncharacteristic if and only if
P (x, do(x)) # 0. As (x,d@(x)) generates NP(X), this proves the following
result.

Proposition 3. The hypersurface £ is noncharacteristic at x € X for P(x, D) if
and only if P, # 0 on N (Z)\O.

Definition. A smooth hypersutface is characteristic at x if and only if Pp(x, $) = 0
for all & € N2(Z). A surface which is characteristic (resp. noncharacteristic) at
all points is called a characteristic surface (resp. noncharacteristic surface).

In case d = 2, hypersurfaces have dimension 1 and the name characteristic
curves is natural. We met such a situation in §1.1 and §1 4.

If a surface is given by @(x) = 0 with ¢ real valued and satisfying doix) #0,
then T is characteristic at x if and only if P,(x, dp(x)) = 0. This is cailed the
eikonal equation for .

For solutions of nonlinear equations, whether or not a surface is character-
istic, depends not only on the surface but also on the solution. One applies
the above criteria with P equal to the linearization of F at «.

Exampres. 1. Find all the characteristic lines for J, + cd,.
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Solution. For 1, £ € R*\0 the line L = {(¢, x): ©¢ + {x = constant} has co-
normal vanety
N*(L) = {(t, x, 41, 2&):t, xe L and 2 e R}.

In order to be characteristic the principal symbol of P must vanish at these
points, thus
P(t,8) =it +icE =0, thatis, 1= —c¢.

If c € C\R, no real solution exists and therefore all lines are noncharacteristic.
Otherwise, (1, ) = constant(—c, 1)is the general solution; so the characteris-
tic lines have equation, x — ct = constant. Note that this recovers the same
lines which played such an important role in the analysis of §1.1. O

2. Find all characteristic hyperplanes for the wave operator
u, —cAu=Pu, ceR,.

Solution. The hyperplane with equation 1t + ¢, x) = constant has co-
normal 1, £. The equation P(t, &) = 0 reads, —1* + ¢?|&|* = 0, which has
general solution, t = +¢|¢|. Multiplying ¢ and t by the same nonzero con-
stant leaves the hyperplane unchanged. Since there are no nontrivial solutions
with ¢ =0, it suffices to consider those £ with || = 1. The most general
characteristic hyperplane has equation

constant = {x, &) + ct, feRY, & =1
Planes are noncharacteristic if and only if 12 # c?|¢|>. Q

3. Find all the characteristic curves at a real solution u of the inviscid
Burgers equation.

Solution. The linearized operator is ¢, + ucé, + u, which has principal symbol
equal to it + u(t, x)i¢. If T is a curve which is charactenistic at ¢, x, then its
conormal t, ¢ at t, x must satisfy t + u(t, x)é = 0. It follows that the tangent
to I' at ¢, x is parallel to the vector with components (1, u(t, x)). Thus &, + ué,
must be tangent to I', so the characteristic curves are exactly the integral
curves of I which played an important role in the perturbation theory in§1.4.

0

Definition. A linear partial differential operator P(x, D) is called elliptic at x
if and only if P(x, ) # Ofor all & e R¥\0. It is elliptic on Q < R if it is elliptic
at each point of Q0.

ExampLEs. 1. If ¢(x) ¢ R, then &, + ¢¢, is elliptic at x.
2. Aiselliptic.

3. 6, + c(t, x)C, is not elliptic at t, x if c(t, x) € R.

Definition. For x fixed the set of real £ # 0 with P, (x ¢) = 0 is called the
characteristic variety of P at x. If P is defined on a open set §, then the



32 1. Power Series Methods

characteristic variety of P is the set
char(P) = {(x, §) e T*(Q)\0: P.(x, §) = 0}.

Here T*(Q)\0 denotes the set of x, £ with & # 0.

The characteristic variety at x is invariant under multiplication by nonzero
constants and is closed in T*\0. If the coeflicients of P are continuous, char(P)
is a closed subset of T*(Q)\0 invariant under multiplication by nonzero
constants in the second, or fiber, variable. An operator is elliptic in Q if and
only if its characteristic variety is the empty set.

A point x, ¢ is in the characteristic variety if and only if P (x, D)e'** = 0.
Here the “i” convention in D is convenient and by P(x, D) we mean the
constant coefficient operator whose coefficients are a,(x).

PROBLEMS

1. For each of the following partial differential operators on R?, find all characteristic
lines:
@& M6 (&G @ CE+ab6s (€) 6 + 66, + ¢
(N ic, -k (g é, + Cose

9

If P(D) is a nonzero partial differential operator of degree m, show that the set of
& € R*such that P(&) = O is a closed set of measure zero. Applied to P, this shows
that most planes are noncharacteristic. Hint. Choose n € R with P(n) # 0. Choose
V a linear subspace of R complimentary to Ry. Show that for each ve V.
{s € R: P(sn + v) = 0} is a set of measure zero. Then apply Fubini's Theorem.
Discussion. The set {P(S) = 0} is a real algebraic variety, the intersection of an
algebraic variety with the real space R?. As such. one can say a good deal more than
that it is of measure zero. However, the intersection with R renders the description
far less detailed than the known propertics of complex algebraic varieties.

" The variety, {P.(&) = 0}, is conic in the sense that it is invariant under ¢ — aé for
all a € R\0.

3. If P is a homogeneous partial differential operator, prove that the intersection of
the characteristic variety with any sphere, {|{| = R}, is a subset of the sphere with
d — 1 dimensional measure equal 10 zero.

4. The principal symbol P, (x, &) is a well-defined function on the cotangent bundle.
The same is not true of the complete symbol P(x. J). Construct an example of a
linear partial differential operator P(x. D), a change of variable y = y(x), and corre-
sponding points x, { and y, n in T*, such that P(x. ) # P(y.n) where P(y. D,)is
the expression for P in the new coordinates. Hint. Almost any P and any nonlinear
change of coordinates works.

The next sequence of problems concerns the solvability of the Cauchy problem up
to errors which vanish to infinite order at £ = {x, = 0}. This is the Infinitesimal
Cauchy Problem. The problem is equivalent, as we will see, to solving the Cauchy
problem on the level of formal power series. The latter question can even be raised for
operators whose coefficients are formal power series. The resulting circle of ideas yield

another perspective on the noncharacteristic condition in the Cauchy-Kowaleskaya
Theorem.
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Let x =(x,,x"), X’ = (X3, ..., X,). For @ open in R, let ¥(x, : w) be the ring of
formal power series in x, with coefficients in C*(w) Equivalently, ¥ is the ring of germs
of smooth functions on a neighborhood of {0} x w < R*. If P(x, D) is a linear differ-
ential operator with coeflicients smooth on a neighborhood of w, construct a formal
operator 2(x, D) with coeflicients in ¥(x, : w) by replacing the coeflicients of P by their
Taylor expansions in x,. By definition, a formal operator with coefficients in ¥(x, : w)
maps ¥(x, : ) to itself. The plane {x, = 0} is noncharacteristic at (0, 0) for P if and
only if the coefficient of (3/6x, )" in P does not vanish at {0, 0).

5. Prove

Theorem. The following are equivalent:
(i) {x, = O} is noncharacteristic at (0, 0) for P.

() There is an open neighborhood w of 0 in R, such that for any f€ ¥(x, : w) and
g;eC®w), 0Sj<m~1, there is a unique ue%F(x,:w) solution of
P(x, D)u = f, 3{u(0,:) =g(-)j<sm-— 1

(iii) For any f and g, j < m — 1, smooth on a neighborhood of 0 in R* and RS,
respectively, there is a neighborhood Q of 0 € R4 and a function u smooth on
a neighborhood of {0} x Q < R, such that forj < m — 1, ¢/u(0, -) = g,(-)on Q
and Pu — f vanishes to infinite order on Q.

Hints. Prove (i) = (ii) = (iii) = (i). To prove (ii), use Borel's Theorem which asserts
that for any element y of ¥(x, : ) there is a smooth function on a neighborhood
of {0} x w which has y as Taylor series in x,.

6. Find necessary and sufficient conditions on the real constants a, b, ¢ so that
aél + b0,8; + cd} is elliptic on R

7. (a) Prove that if the coeflicients of P are continuous then the set of points x, such
that P is elliptic at x, is open.
(b) Prove that P(x, D) is elliptic at x if and only if there are constants ¢, > 0 and
¢, such that

[P(x. &) 2 ¢, |EI™ — ;¢

§1.7. Holmgren’s Uniqueness Theorem

If u, and u, are two local solutions of the mth order linear Cauchy problem
Pu =,
'u=0*v onZX forall |al<m-—1, vgiven,
then the difference is a solution of
Pu =0,
{a‘u =0 onX forall |aj<m-1. (1)

Thus, to prove local uniqueness one must show that solutions to (1) on a
neighborhood of X € £ must vanish on a neighborhood of x. When X is
noncharacteristic, solutions of (1) must vanish to infinite order at £. Thus, if u
is real analytic it must vanish on a neighborhood of . Holmgren's Theorem
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asserts that the same conclusion is valid if the coefficients of P are real analytic,
¥ is noncharacteristic, and u is only supposed to be C™.

The strategy of the proof is motivated by an abstract result. Suppose that
X and Y are normed linear spaces and that T: X — Y is a continuous linear
map. The transpose T*. Y' — X' of T is a linear map, defined on the dual spaces
by

(TY, x> =y, Tx) forall yeY and xeX.

Proposition 1. If range(T") is dense in X', then ker(T) = {0}, that is, u =0 is
the only u € X satisfying Tu = 0.

Proor. For all y'e Y’, (y', Tu) = 0. The definition of transpose gives
(T'y',u) =0for all y.

Since {T'y":y’ € Y’} is dense in X', we conclude that (x’, u) =0 for all
x’ € X'. The Hahn-Banach Theorem implies that u = 0. 4

The point is that existence of solutions of the transposed equation T'v = g,
for a dense set of right-hand sides g, proves uniqueness for solutions of Tu = /.
The idea of Holmgren is to use the Cauchy-Kowaleskaya Theorem for the
existence part, the real analytic functions being dense.

Motivated by theidea, we begin by defining the transpose of a linear partial
differential operator on Q

P(x,d) =Y a,(x)0%, a,eC>(Q).
If u e C™(Q2) satisfies Pu = Q0 in Q, and v € CZ(Q), then

J‘ (Pujv = 0.
o

One then integrates by parts passing the operator P to the function v. The
- resulting operator is called the transpose of P and is denoted P'. To see the
form of P* consider the individual terms

J.(a,a'u)v dx = (- 1)« Jua'(a,v) dx.

Thus if
P'(x, d)v = ) (—9)(a,v),
then

j (Pu)v dx = j‘ uP'v dx, forall ueC™(Q), ve C3().
) n

Note that the principal symbol of P* satisfies

Po(x, §) = (—1)"Pp(x, &), @)
so I is noncharacteristicat x for P if and only if it is noncharacteristic for P*.
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S

dx, = nydo ~

dx, = -n,do

Figure 1.7.1

Next consider the boundary terms which appear when the supports of u
and v reach o). We suppose 4, v, a, € C™(€Q) and QQ is sufficiently regular so
that the Fundamental Theorem of Calculus is valid. That is,

I Judx = J- nu do, for all ue C}(RY), (3)
o n

where n = (n,, n,,...,n,) is the unit outward normal to L and do is the
clement of d — 1 dimensional surface area on . In the language of differential
forms, the right-hand side is the integral of the 4 — 1 form

— -1 N\ .
w=(—1Y"tudx, A---Adx;an-- Adx, (factor dx; omitted), (4)

over I with X oriented as the boundary of 1 This means that vy, ..., v,-; is
an oriented basis for the tangent space to £ ifand onlyif n,v,, ..., v,_, is an
oriented basis for the tangent space to R%. These two observations for d = 2
are illustrated in Figure 1.7.1 and Figure 1.7.2. Note that
ou
dw 'a—x;dx1 A A dx‘
so (3) follows from Stokes’ Theorem. Similarly, (3) is a consequence of the
Divergence Theorem applied to the vector field (0,0, ..., u,...,0) with & in

Figure 1.7.2
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the jth slot. Conversely, knowing (3) for all u and j yields the general Stokes
and Divergence Theorems.

ExampPLES OF GooD DoMains. 1. Equation (3) holds if Q = R? is a smooth
submanifold with boundary.

2. Equation (3) holds if Q = Q, N Q,, where the Q; are as in the previous
example with boundanes which intersect transversely.

To investigate the boundary terms from our integrations by parts, write 9*
as a product of partial derivatives of first order
Ja|
=[la,

=1
Then moving ¢, from u to av by an integration by parts yields

I d'uavdx = J (/ a.,)u (Gp,ar) dx + J (fl 3,,,)11 n, v do.
a \Js

Next move the second derivate, 6, to find

-J. (/ﬁ B,I)u(a,,av) dx =J' (/ﬁ 5.,)“(31,&.0?) dx
0 =2 (9] =3
_ J ()ﬁ a,,)un,,a,.v do.
a \J=3

Continuing in this fashion yields an identity

J' (Pu)o — u(P'v)dx= ¥ I ag,(x)éPule do. (%)
0 Bl+lrism=1 Jon

The following lemma is a consequence.

Lemma 2. If u and v belong to C™(Q), and for each x € éQ either &7u(x) = 0
Jorall|y| <m—10rd*v(x)=0 forall|x| <m — |, then

J (Pu)v — u(P'v)dx = 0.
o

The strategy is to use this identity in the lens-shaped region, bounded on
one side by Z and on the other by a smooth hypersurface, which is nearly
parallel to and quite close to E (Figure 1.7.3). Since I is nearly parallel to Z,
it is noncharacteristic for P and therefore noncharacteristic for P*. If v is a C*
solution of

Pv=g, 0%|g=0 for |aj<sm-1, (6)
and u satisfies (1), then
Jl ug dx = 0.
1]
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™M

Figure 1.7.3

If we solve (6) for many g, this identity is sufficient to show u =0 in Q. For
example, Weierstrass® Approximation Theorem shows that it is sufficient to
solve for all polynomials g, since one could then choose g, converging uni-
formly to & in Q so

I lulz dx = lim j ug, dx = im0 = 0. (7)
0 o)

Theorem 3 (Holmgren Uniqueness Theorem). Suppose that P(x, D) is a linear
partial differential operator with coefficients real analytic on a neighborhood of
XeR4 and T is a C® embedded hypersurface noncharacteristic at . If u is a
C™ solution of (1) on a neighborhood of X, then u vanishes on a neighborhood
of .

PROOF. The first step is to normalize X. Choose real analytic coordinates so
that £ = {x, =0} and X = (0,0, ..., 0). Next let

t=x, +(x3 +- 4 x3),
J2= X2 V3EX3, V=X
y=(52,-e ¥
Then in ¢, y coordinates, T = {t = [y|*}.
For e > 0, let I, be the surface {t = ¢} in ¢, y space. Let w, be the region

Iy < t < ¢ between X and £, (Figure 1.7.4).
Since X is noncharacteristic

P= ;: a; ,8/¢!  with a,4(0,0) %O0.
jtipism
Choose r, > 0o that a,, o(t, y) # Ofor Jt| + |y| < r, and the coeflicients of
P are real analytic on (t| + {y| < 2r,. Divide P by a,, o so that
P=0o+- (8)

in It| + |y| < r,. Then there are constants C, B so that the coefficients a, of P*
satisfy
|08 a5l < C(Ba! foralla and ltl+ |yl <. )
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N/ o

Figure 1.74

Choose ey > Oso thatw,, < {|t| + |y]| < r, }. Consider the Cauchy problem
with initial data at ¢t = ¢ < ¢, that is,

Pv=g(ty), 0%.,=0 forall |a|]<m—1, (10)

With g real analytic at (¢, 0). Then the derivatives of g satisfy estimates
analogous to (9)

6:? y9 (e, 0)
x!

< C(B"™ for all x. (11)

For linear P satisfying (8) the method of majorants yields a solution of (10)
with estimates for the derivatives d’u(e, 0) depending only on C, B, C, B. As
P islinear, the domain of convergence of the power series solution to (10) does
not change if g is multiplied by a constant, so one gets a uniformm domain of
convergence for ¢ € [0, &5] and g with B uniformly bounded. For g a poly-
nomial, the estimate (11) holds for any B < . Thus, (10) has a solution in
It — ¢| + |yl < p with p independent of the polynomial g and ¢ € [0, ;).

N
N

Figure 1.7.5
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_.

X
Figure 1.7.6

Choose ¢, € ]0, &] so that (Figure 1.7.5)
{lt—el+lylsp}>> @, .

The argument in (7) shows that u = 0 in w,,. In the original coordinates,
the set w,, is a one-sided neighborhood of x (Figure 1.7.6).
A similar argument works for the opposite side, and the proof is complete.

O

Corollary 4. The same result istrue if T is supposed to be only C™ instead of C*.

ProoF. For 7 small, the ball B,(xX) is divided cleanly in two by Z, which is
noncharacteristic at all points in B,,. Thus B, = B* U B~ U(Z n B,). Define it
to be equal to u in B* and identically zero in B~ (Figure 1.7.7). Since I is
noncharacteristic and 0°uly = 0 for all {x] < m — 1, the same identity is true
for |2} = m and therefore

ue C", Pu=0.

For p small let £ be the sphere of radius p tangent to T at  and lying entirely
in B~ U {X} (Figure 1.7.8). For p fixed, apply Holmgren's Theorem to i with
vanishing Cauchy data on £. Conclude that ii =0 on a neighborhood of X,
so that ¥ = 0 on a neighborhood of X in B* U X. A similar argument works
for B". 0O

Corollary 5 (Semiglobal Holmgren). Suppose that P(x, D) is an mth order
linear partial differential operator with coefficients real analytic on a neighbor-

Figure 1.7.7
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Figure 1.7.8

hood of X.a C™ noncharacteristic embedded hypersurface. If u € C™ on a neigh-
borhood of ¥ satisfies

Pix,Du=0. ¢&uly=0 for |al<m~—1,

then u vanishes on a neighborhood of X.

ProoF. For each X € Z, Holmgren's Theorem asserts that there is an an open
neighborhood. w(X), of X with u = 0 on w(X). Then u vanishes on the neighbor-
hood | Jz¢x w(%) of Z. O

For linear equations with C™ instead of C“ coeflicients one may have
nonuniqueness in the noncharacteristic Cauchy problem. The constructions
of Plis and P. Cohen are deservedly famous (sce [H2. Vol. 3]).

On the other hand, it is easy to find examples of nonuniqueness for the
characteristic Cauchy problem. Consider, for instance, the operator P =
¢, and I = {xe R* x, = 0}. Then u =f(x,} is a good example, provided
fe€ C*(R) has support in x, > 0 (see also Problems 1-3).

PROBLEMS

The next problems give further examples of nonuniqueness for the characteristic
Cauchy problem. This topic is taken up again in §3.9 where it is seen to be related to
some ill-posed “inverse problems.”

1. Suppose that P(x, D) is a first-order operator with smooth real coefficients. Then
the principal part of P is a smooth vector field. Suppose that X is an embedded
hypersurface which is everywhere characteristic for P. Prove that for any x € L there
is 2 smooth nonzero solution, u. of Pu =0 on a neighborhood of x such that u
vanishes identically on one side of X.

Discussion. In particular, the Cauchy data vanish on £.

2. Suppose that P(D) = P,(D) is a homogeneous constant coefficient partial differ-
ential operator, and that H is a half-space with characteristic boundary. Prove
that there are smooth noatrivial solutions, u, to Pu = 0 which have support in H.
Hint. Write the half-space as (x, §) 2 0 and try (unctions of the form f({x, {)).
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DiscussioN. Such solutions are called null solutions. They exist without the homo-
geneity assumption but the construction is harder (see Problem 3 and §3.9.

3. In §4.2 the function
u(t, x) = (4mt)~'Re =4

is shown to be a smooth solution of the heat equation u, = u,, in ¢t > 0. Verify this
by direct computation. Extend u to vanish in ¢ < 0. Prove that the resulting function
is C®(R?*\0) and satisfies the heat equation on R?\0. In addition, show that u does
not vanish on a neighborhood of any point (0, x) with x # 0.

Drscussion. At such points (0, x), u is a counterexample to local uniqueness for the
charactenistic Cauchy problem.

§1.8. Fritz John’s Global Holmgren Theorem

The content of John's Global Holmgren Theorem is that if Pu = 0, and the
Cauchy data of u vanish on Z, then u vanishes on any set swept out by
deforming X through noncharacteristic surfaces whose ends stay in X (Figure
1.8.1). The precise description is somewhat long. The result was proved in
1948, though the methods were all available since the last century.

Suppose that Q c R is open and P(x, D) is an mth order linear partial
differential operator on Q with coeflicients in C*(£2). In addition, suppose that
X < Q is a noncharacteristic immersed C™ hypersurface.

We must define precisely what is meant by a continuous deformation
through noncharacteristic surfaces  ; whoseends lie in X. The surfaces Z; will
be images of a fixed set ® < R? by a map ¢ depending on /€ [0,1]). We
suppose that:

(i) Ccc R isopenando: [0, 1] x cl(€) - Q <= Ris continuous.
(ii) Foreach 4 € [0, 1],0(4, *): @ — R?is a C™ immersion of a noncharacter-
istic hypersurface, Z,.

Figure 1.8.1
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(iii) The initial surface, X,, is a subset of .

(iv) o([0, 1] x 80) c X which expresses the fact that the edge (4, 30) of L,
lies in X.

Theorem 1 (John's Global Holmgren Theorem). If u e C™(Q), Pu = 0inQ and
0“u|y = 0 for [a] < m — 1, then for|a| <m — 1, 3*u = 0 on o([0, 1] x cl(®)).

PROOF. Let 4 < [0, 1] be defined as
{1€[0,1]: for all |a] < m — 1, 3*u = 0 on ¢([0, 4] x cl(®))}.

Since g and 0“ufor |a| < m — 1arecontinuous, A4 isa closed subset of [0, 1].
By hypothesis, 0 € 4.

By connectedness of [0, 1], it suffices to show that 4 is open in (0, 1].

If i € A. then 0u|y, = 0 for || < m — 1, so by Corollary 1.7.5, u vanishes
on a neighborhood of Z,. Since a(4, é€¢) c L,, u vanishes identically on a
neighborhood of o(4, 0). Thus u vanishes on an open neighborhood A4~ of
the compact set a({i} x cl((")).

Since g is continuous we may choose, for each p e {4} x d(®), a relatively
open nclghborhood w, < [0,1] x cl(®) of p such that a(w,) = A". Then

= )o,isa relatnvely open neighborhood of {1} x cl(®) whose image lies
in ./V

ForO<e<l,letn, =([4—¢& A+ eJN[0,1]) x cl(€). Denote by ~ com-
plement in [0, 1] x cl(®). The decreasing family of compact sets (~w) N 1,
have empty intersection. It follows that (~ w) N n, is empty for all ¢ sufficiently
small.

Thus for ¢ small, 5, < w, so a(n,) = 4" an open set on which u vanishes.
Thus, for |x} <m — 1, ¢°u vanishes on o(n,) and therefore [4 —¢, A + €] N
[0, 1] < A, proving that 4 is open. 0O

Application 1. The unique continuation principle for real analytic elliptic
partial differential equations.

Theorem 2. Suppose that P(x, D) is an mth order linear elliptic partial differ-
ential operator whose coefficients are real analytic on a connected open set Q,
and X is a piece of C™ hypersurface in Q. If u e C*(Q) satisfies Pu = 0 and for
alijal <m—1,0%=00nX, thenu=0inQQ

The hypothesis is satisfied if 4 vanishes in an open subset w € Q.

PROOF. Let I be the piece of surface and choose X € I. For y € Q, choose an
embedded smooth arc transverse to T and connecting X to y (Figure 1.8.2).

The small patch of surface is deformed following the idea indicated in Figure
1.8.3. All the deformed surfaces are noncharacteristic, thanks to the ellipticity
of P. Global Holmgren implies that u vanishes on a neighborhood of y.
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|

Figure 1.8.2

To describe precisely such a deformation, the first step is to change co-
ordinates in a tubular neighborhood of the curve y connecting X to y so that
in the new coordinates z = (z,, ..., 24) = (z,, 2°),

v={(50,...,0:0<s< 1}and £ > {(0, 2'): |z'| < 2r}.

Then take 0 = {z":|2’| < r} and (4, 2') = (a4 cos? |2'|n/2r, 2') witha > 1.
a

Remarks. 1. It is true but not easy to prove that, for elliptic P(x, D) with
real analytic coefficients, all solutions of Pu € C® are real analytic. This gives
a second proof of unique continuation since u vanishes to infinite order on
since I is noncharacteristic.

2. Sketched deformations are easier to understand than the precise for-

mulas. For later examples we will give the sketch and leave the construction
of precise ¢’s to the reader.

Application 2. Domains of influence and determinacy for the wave operator
and D’Alembert’s formula.

In the next sequence of results the Global Holmgren Theorem is applied to
the partial differential operator P(,, d,) = 8 — c?A = (1. P is called the ware
operator or the D'Alembertian. The equation Pu =0 is called the wave
equation.

Theorem 3. If ue C}(R, x R?) satisfies Ou =0 and u},.o = u,},-0 =0 on
(x{ < R, then
u=0 in {(t,x): x| <R —c|t]}.

Figure 1.83
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(0, cR)
speed ¢
slope é—
(0,-cR)
Figure 184

PROOF. The domain is a double cone of revolution (Figure 1.8.4). To treat the
upper half. the noncharacteristic initial disc is deformed through the surfaces
of revolution with section sketched in Figure 1.8.5. The deformed surfaces are
noncharactenstic provided their conormals satisfy || > ¢|&). Thus the curves
must have shallower slopes than the side of the triangle. This can be achieved

without difficulty. O
t
4
(0. cR)
PN
R0 (Ao
Figure 1.8.5
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cit| < R < dist (x, K)

t=0

Figure 1.8.6

Corollary 4. Suppose that ue C}(R!*?) is a solution of the ware equation,
CJu = 0. and that K is the support of the initial data

K = supp u,},.0 v supp ul,-, = RY.

Then
supp u < {(¢, x): dist(x. K) < cl¢f}. (n

ProOOF. If T. T satisfies dist(£. K) > clt|. choose R € ]cit], dist(X, K)[ so the
initial data of u vanish on the ball of radius R with center X (Figure 1.8.6).
Then Theorem 3 suitably translated shows that u = 0 on the double light cone
with center at(0, %) and radius R. The point z.  lies in the interior of this set. (]

This corollary asserts that waves propagate at speeds less than or equal to
c. The set on the right-hand side of (1) is called the domain of influence of K.
It is the set of points in space -time influenced by the Cauchy data in K. It
consists exactly of those points which can be reached by curves starting in K
at time ¢ = 0 and never exceeding the speed c.

Restating the corollary we have:

If ue C*(R, x RY)satisfies Ou = 0 and u|,., = 4,],-0 = 0 on the open subset
€ < R, then u =0 on {{1, x): dist(x, R\ ) > c|1}}.

Thus, if the Cauchy data of two solutions u and ¢ agree on the set ¢, then u
and v agree on {(t, x): distix, R‘\¢) > clt]}. This set is called the domain of
determinacy of €, since the values of solutions are determined in this set by
the values of Cauchy data in @. It consists of those points in space-time which
cannot be reached by curves starting at ¢ = 0 in the complement of ¢ and
never exceeding the speed ¢ (Figure 1.8.7).

The boundaries of the domain of determinacy move inward at speed ¢. The
boundaries of the domain of influence move outward at speed c.
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Domain of determinacy of O Domain cf influence of O

Figure 1.8.7

These last results are sharp. In the case of x € R!, this is an immediate
consequence of D'Alembert’s formula for the solution of the Cauchy problem

u, — cug, =0,  u@ )=1() 40 ‘)=g. 2

The derivation of the formula has two ingredients. First, one produces a

solution of the Cauchy problem by a clever computation. That it is the only
solution follows from the Global Holmgren Theorem.

The construction of a solution begins with the observation that

so that if (¢, + cc;)v = 0, then ¢ satisfies the | — d wave equation. Theorem
1.1.1 shows that the general solution of (¢, + ¢é,)v = O1s a function of x F ct.
Thus, for any ¢, ¢ € C3(R),

u=@(x +ct)+ Y(x—ct) 3)

is a solution of (J,.,u = 0.
Our strategy is to find ¢, ¥ so that u, given by (3), solves (1). The Cauchy
data of such a u are given by
u(0. x) = ¢(x) + Y(x),

(0. x) = co’(x) — c¥’'(x).

Diflerentiating the first of these equations gives the system

’ 1 4 [ 14 ’ g
o'+ =/, ‘P_¢=z-

Thus

,_ S +gjc . _ [ ' —g/c
@ = 2 ? w -~ 2 .
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Choose G with G' = g. Then with constants a and b

o S +26/c ta

_f-=Ge
Y= 3 + b.

The equation ¢ + ¢ = f forces a + b = 0. Note that adding a to ¢, while
subtracting a from ¢, does not affect the value of u defined by equation (3).
This leads to the formula for u

flx +ct) + flx — ct)

1
u= 5 .+ i?(G(x + ct) — G(x — ct)). (4)

To get an expression in terms of the data, note that

x¥ct

Gix+ct)-G(x—ct)= J g(s) ds.

x—et

Theorem 5(D’Alembert’s Formula). If fe C*(R)and g € C*(R), there is exactly
one solution u € C*(R, x R,) of the Cauchy problem (2). The solution is given

by the formula
e, x)=f(x +ct) + f(x —ct) N _l_j'
2 2c

g(s) ds. (5)

Xx=ct

PROOF. Since this u has the form (4) it satisfies the wave equation. Formula (4)
was derived exactly so that the initial conditions are satisfied. This establishes
existence and the formula. Uniqueness is a consequence of the Global Holm-
gren Theorem. 0

Corollary 6. If 2 <k e N, fe C(R), and g € C**(R), thenu € C*(R'*").

Corollary 7. If u e C*(R} x R}), k 2 2, satisfies Qu = 0, then there exist ¢,
¥ € C¥(R) such that u is given by equation (3).

PROOF. Let ul,.0 =/, Ul,.0 = g € C*~*, and choose G € C* with dG/dx = g.

Then
J G f G

do the trick. d
Examining (5) shows that our estimates for the domain of dependence and

domain of influence are exact. The values of u at ¢, x depend on the values of
£ at the end points of the interval [x — cftl, x + c{¢(] and on the integral of g
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u>0

Supp @

u<g

Figure 1.8.8

over the whole interval. Thus the domain of dependence of ¢, x is exactly the
interval predicted by Holmgren's Theorem.

Similarly. if we consider the case f = 0 and ¢ > 0. we find that supp u 1s
exactly equal to the set on the right-hand side of (t). The data influence all the
points which they could possibly influence. The case where supp ¢ is an
interval is sketched in Figure 1.8.8.

Application 3. The walls have ears.

Consider a wave propagating in x > 0, and an observer at x = 0 who
measures u(t, 0) and u(t, 0) as functions of time. If he observes for0 <t < T.
what part of the wave field can he determine from his measurement? The
formulation in equations is

U, —c’u,, =0 in x>0.rteR.
u(t,0)=f and u, (r.0)=g knownfor 0<t<T

Thanks to the linearity of the wave cquation, this is equivalent to asking at
what points must u vanish if f and g vanish for 0 < t < T. Thus, given
Ou=0 in R, x {.vg 20} (6)
and
u(t,0) = u,(t,0)=0 for 0<t<T, (7)
it suffices to determine where u is forced to be zero.

Solution. The Cauchy data of 4 vanish on the segment {x = 0and0 <t < T}.
Apply Fritz John's Global Holmgren Theorem with surfaces sketched in

Figure 1.8.9. Conclude that u vanishes in the triangle swept out, namely
0<x<c(T/2 - |t - T)2|). O

There are several multi-dimensional generalizations. Here is one. For x € R,
an observer in the d — 1 plane {x, = O} measures u(t, 0, x’) and u,(t, 0, x’) for
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(1. 0)

(0. 0)
Figure 1.89

all x' =(x,,...,x,)and 0 < t < T. The analysis is similar. Take surfaces as
above, and almost independent of x,, ..., x,. Precisely, if the deformation

aboveis given by I, = {x, = F(4 1)}, then for ¢ > 0 define multi-dimensional
deformed surfaces by

Zis={x;=Fa 1) —eix] + -+ x3 )
Then let ¢ = 0. One finds that ¥ must vanish in the cylinder which is the
product of the triangle from the one space dimension problem and R4:!.
Corollary 8. If ue C*(R, x [0, oo x R4™'), (1, ,,u=0inx, > 0, and
“lx.-0=“x“x,80 for 05‘51-'

-3}

To observe wave motion along the entire strip [0, T] x R%! requires many
observers when d > 1. We next ask what can be observed from a neighbor-
hood of a single point.

Suppose u € C}(R, x RY), O,,u =0, and u =0 on a neighborhood of
[0, T] x {x = 0}. Where must 4 vanish?

then

u=0 in {OleSc(.;_

Application 4. What can a single snoop hear?
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t=T+¢

T
’=2.|X|:C + €

=—T-£

Figure 1.8.10

Solution. Choose ¢ > 0 so that u(t, x) vanishes if dist((¢, x), [0, T] x {x =
0}) < 3e. Apply the Global Holmgren Theorem with noncharacteristic surface
Zequalto ]J—¢ T + ¢[ x {|x| =¢}. The deformed surfaces are surfaces of
revolution about the t-axis with cross section sketched in Figure 1.8.10. O

Corollary 9. Suppose ue C*(R, x RY), O,.,u =0, and u = 0 on a neighbor-
hood of [0, T] x {x =0}, thenu =0 on|x) < c(T}2 - |t — T/2)).

This result determines precisely the time of arrival at a point y ¢ K of a
wave which begins at t = 0 in K. Toward this end consider
ueCYR, xRY), [O,.u=0,
K = supp u|,.o " Supp 4, 0.

For y ¢ K let 6 = dist(y, K). Then Corollary 4 shows that 1—d/c, é/c[ x {y}
is disjoint from supp u. This result is sharp.
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Signal arrives at (= =
e
—o—
y

Signal arrives at t = --f:
Figure 1.8.11

Corollary 10. With the above notation, one of the two points ( + é/c, y) lies in
supp u.

Remark. A signal cannot reach y in time less than &/c, but it reaches in time
exactly é/c in either forward or backward direction of time (or both). A wave
moving away from you will arnive in the past.

ExampLE. With d = 1, consider a forward-moving blip u = Y(x — ct) which
att = Qhas supportin {x < 0} and {x = 0} lies in the support. Then the signal
arrives at t = d/c. A backward-moving blip,u = y(x + ct),arrivesatd = —r/c
(Figure 1.8.11).

PRrOOF OF COROLLARY 10. If (+6/c, y) ¢ supp u, then [-d/c, 8/c] x {y) is
disjoint from supp u. Thus, for some ¢ > 0,

~0—-¢cd+¢
[ c ’ e ]x{ix"ﬂse}

is disjoint from supp u. Apply Corollary 9 to conclude that at t = 0, u vanishes
on the ball of radius & + ¢ with center y. This contradicts the definition of 8.

O

PROBLEMS
1. Prove

Theorem. If u € C™(R’) satisfies PDu=0on x-{ sT,andu=0o0nx- £ s T,
where P.({) # 0, thenu = 0onx-{ < T,.

Discussion. This result is false if .P.(C) = () as you showed in Problem 1.7.2,
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2. (i) Prove

Theorem. If H is a half-space of R* and u € CZ(R®) satisfies supp P(D)u < H, then
suppuc H.

Hine. First, observe that Problem 1.6.2 can be used to show that {&: P,(£) # 0} is
dense in RZ. Then use the previous problem in half-spaces converging to H. This
resultis not true without the hypothesis u ¢ CP.as you have shown in Problem 1.7.2.
(ti) Prove

Corollary. If u € C5(R?) then the convex hull of supp (u) is equal to the contex hull
of supp(P(D)u).

3. Suppose that u(t, x) € C*(R?) satisfies u, + cu, = 0 with c € R and u(0, x) = 0 for
x € {a. b]. Use the Global Holmgren Theorem to find the largest set on which u
must vanish. Show by example that your result is sharp.

Discusston. This is another example of a domain of determinacy.

Inall the examples discussed a description is given of the deformed noncharacteristic
surfaces, but only for Theorem 2 did we make an effort to give a precise construction
of a map g as in Theorem |.

4. For Theorem 3 or Corollary 8 give a precise explicit description of a mapping ¢
satisfying the conditions of the Global Holmgren Theorem and sweeping out the
desired region.

S. Suppose that P = [](4, + ¢;8,) ¢, < ¢, <+ <.
(i) Prove thatif g;e C*"/(R)for 0 < j < m — I, then the Cauchy problem

Pu=0. éu©. )=g() j<sm-—1,

has a C™(R?) solution of the form ¥ ¢,(x — c;1).
(ii) Show that u is C* if the g;are C* ™/ with k > m.
(iii) Prove that the general C*solutions of Pu = 0is a sum ofthis form with ¢, in C*.
(iv) Describe the domain of influence of an interval {a, b] in {¢ = 0}.
Hint. Imitate the proof of D*Alembert’s Theorem.

§1.9. Characteristics and Singular Solutions

The explicit solution formulas of §1.1, D’Alembert’s formula, and the perturba-
tion theory of §1.4 all involve characteristic curves. In the last section, char-
acteristic curves and surfaces (ford > 2) played an important role in describing
the propagation of zeras. In this section, we examine their role in the construc-
tion of simple singular (= not infinitely differentiable) solutions.

Consider {irst the equation 4, + cu, = O with ¢ € R. The general C* solution
is u = g(x — ct) with g € C*(R). If g € C*(R) is piecewisc smooth on R, with
jumps at pointsa; < a; < -+ < a,, with jumps in derivatives k,, ..., k,,, then
u will be piecewise smooth on R? with jumps in derivatives of order &, > 2
along the curves x — ct = a,.
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More generally, consider the variable coeflicient equation
u, + ¢(t. X)u, + d(t. x)u =0, c.de C*(R?:R). (H

This is an ordinary differential equation for u along the integral curves of the
vector field & + c(t, x)¢,. These integral curves are the characteristic curves
for this operator. So long as the integral curves do not escape to infinity in
finite time one has an explicit representation of the solution. The escape time
to infinity will be finite provided ¢ does not grow too fast as | x| tends to infinity.
for example. if -

(VT > 0)(3K)  (lt] € T=|c(r. )l € K(1 + [x]).

If ¢ is piecewise smooth as in the previous paragraph, the solution u will be
piecewise smooth with jumps in derivatives of order k; across the characteristic
curves I passing through the points (0. a;). These two examples suggest that
characteristics are the carriers of singularities of piecewise smooth solutions.
This is true is great gencrality.

Consider an mth order linear operator P(x. &) with coeflicients in C*(R?).
Suppose that I is an infinitely differentiable embedded hypersurface in R.
Piecewise smooth functions singular across X are defined as follows. Since T
is anembedded hypersurface. for cach x € I there is small open ball B centered
at x so that B is diffeomorphic to {|x] < I} by a diffeomorhism which carries
BnXto{x, =0}n{lx| <1} (Figure 19.1).

Definition. A function u defined on a neighborhood of I is piecewise smooth
if, for each x€e Z, there is a ball B as above such that u 1s C* on both

components, B . of B\Z. and the restriction of each derivative ¢*u to B,
extends to a continuous function on B..

Theorem 1. If P and T are as above and there is a piecewise smooth u defined
on a neighborhood of ¥ satisfving ue C™, Pue C*, and u is not C* on a
neighborhood of x, then X must be characteristic at x.

Proor. If T is noncharacteristic at x, choose B as in Figure 1.9.1 such that £
is noncharacteristic at all points of £ N B.

Write the equation Pu e C®(B) in coordinates with Z = {x, = 0}. The
coeflicient of (¢/¢x,)™ is nonzero on X since I is noncharacteristic. Shrinking

B if necessary, we may suppose that the coefficient is nonzero on B. Dividing
by this coeflicient yields a relation

Mu= Y Afx&,...,0)8 u+/, (2)

1sjsm

where A; is a linear differential operator of degree j. The coeflicients of 4; and
the function f belong to C*(B).

Leté’ = (¢5,....0,) and x’' = (x,, ..., x,). By hypothesis, u € C*(B) and uis
C®oncl(B,)and cl(B.). Thus*u(0+, x) = 7 u(0—, x)forall x with{a| < m.
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Figure 1.9.1

The theorem is proved by showing that u € C*(B). This is done by proving,
for all k > m, that &*u(0 +, x') = ¢*u(0—, x") for all 2 € N4 with a, < k.

Applying (') to the identity &{u(0+, x') = &u(0~, x’) for j < m, shows
that the result is true for k = m.

Differentiating (2) yields

Glu="""¢r = (.’,“‘""( Y A G, E)EMT +f).
1sjsm
By the inductive hypothesis the limits of the right-hand side on the two sides
of £ N B are equal. Therefore & *'u(0+, x) = &} *'u(0—, x’). Applying (¢'Y
to this identity proves the assertion for k + 1. O

We conclude that the only possible carriers of singularities of piecewise
smooth solutions are the characteristic surfaces.

In particular, elliptic equations which have no characteristic surfaces can
have no such singular solutions. In fact, solutions of Pu e C® with P elliptic
must themselves be C*. For P of order 2 this Interior Elliptic Regulanity
Theorem is proved in §5.9.

D’Alembert’s formula (1.8.3) shows that all the characterstic curves,
x + ct = constant for the 1| — d wave operator [J,,,, are carriers of such
singular solutions. In Problem 1 you extend this result to all homogeneous
constant coeflicient operators. It is not difficult to show that if ¥ is simply
characteristic, in the sense that VP, (x, &) # O for all x, £ € N*(Z), then there
are many piecewise smooth solutions with jumps along I (see John's chapter
in Bers, John, and Schecter {BJS)).

We next turn to a different phenomenon involving singularities and for
which the characteristics play a crucial role, namely, the formation of shock
wates.

For equation (1) in regions of space-time, where ¢ is an increasing function




§1.9. Characteristics and Singular Solutions . 55

of x, the characteristic curves spread apart as t increases. The domain of
influence of an interval [a, b] in {t = 0} is bounded by the characteristic curves
through a and b and is therefore an expanding region where c is increasing.
These are expanding waves. Conversely, where ¢ is decreasing the characteris-
tics approach each other as t increases and one has compressive waves.
Theorem 1.2.4 implies that integral curves of 4, + c(t, x)0, cannot cross, so
that even though they may grow closer together they will never meet. The
expansion and compression just described is caused by the fact that the speed
of propagation ¢ depends on ¢, x.
Consider next the inviscid Burgers equation

u, + uu, = 0. (3)

Writing the second term as (u?/2), expresses the equation as a conservation
law, that is, an expression of the form

f(x,u), +g(t, x,u),=0.

The name is explained for the Burgers equation as follows. Consider the
integral of u from a to b as the amount of u in [a, b]. The rate of change of
this quantity is given by

d b b
‘Tfj u(t, x)dx = | u(t, x)dx

a va

b (u’(t,x)) p ==uz(b)- u’(a)
2 . X 2 .

Jva

The last expression involves only the values of u at the boundary of [a, b],
and is called the flux of u. The function u?/2 is called the flux density. The
quantity u?(b)/2 (resp. u?(a)/2) is interpreted as the amount of u flowing in at
b (resp. out at a). If u is equal to a constant u(zc) outside a (possibly time-
dependent) compact set, one sees that f u — u(oo) dx is independent of t. Thus
the amount of u is conserved. For the general form, it is {f(x, u) — f(x, u(c0)) dx
which is conserved. Most of the laws of continuum mechanics are conservation
laws for physical quantities like energy, mass, and momentum.

Consider next the initial value problem for the Burgers equation (3) with
data

u(0, x) = g(x). @)

Suppose that a C! solution u exists on an as-yet unspecified region of space-
time. In §1.6 we showed that u is constant on the integral curves of the vector
field 3, + ud, which are straight lines. These lines are precisely the characteris-
tic hypersurfaces (dimension d — 1 =1 in this case). This gives a simple
formula for the solution. At the point (0, @) on the initial line we know the
value of (0, a) = g(a). The characteristic through this point is then the line
(¢, a + tg(a)), so long as it lies within the region where u is C*. The solution
must have value g(a) on this line.
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speed = g(a)
speed =g(b) > g(a)
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Figure 1.9.2

Consider the behavior of the characteristic lines through (0, a) and (0, b)
witha < b. If g(a) < g(b), the lines diverge from each other as ¢ increases. If g
is monotone increasing in the interval {a, b], then characteristics starting in
{0} x [a. b] fan apart and simply cover an expanding wedge-shaped region
(Figure 1.9.2). Such a solution is called an expansion wave or a rarefaction wave
or a fan. The amount of u in the fan at time ¢ is given by

b+1th)
J. u(t, x) dx.

a+igla)

Its rate of change with time is equal to

b+1g(d)

f u,(t, x) dx + g(b)utr, b + tg(h)) — gla)u(t. a + tg(a)).
a+igle)

Using the differential equation converts the first term to a boundary term

which exactly cancels the last two. Thus the amount of u in the fan is conserved

and is spread over an ever-widening interval. This explains the origin of the

name rarefaction wave.

A more striking phenomenon is produced if g(a) > g(b). The two character-
isticlines approach and cross (Figure 1.9.3). The fact that u has different values
on the two lines is contradictory at the crossing point. The lines cross at
t = —(b — a)/(g(b) — g(a)). This proves the following estimate on the time of
existence of C! solutions.

Theorem 2. If the initial value problem (3). (4) has a solution in C*({0, T) x R)
and g is not monotone increasing, then

T <inf { :a < band g(a) > g(b)}

b -
g(b) — gla) (a)
= —1/inf{g’(x): x € R}.

The last equality is a simple consequence of the Mean Value Theorem. An
alternate proof'is presented in Problem 2. The estimate of Theorem 2 is sharp.
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u=g(a) u=g(d)

speed = g(a) speed = g(b) < g(a)

a b
Figure 1.9.3

Theorem 3. If g € C'(R) and inf g’ is finite, then with
T=w if(infg)20 and T= —(infg’)"" otherwise,

there is a unique solution u € C*([0, T[ x R)of the initial value problem (3), (4)
given implicitly by the formula

u(t, x) — g{x — t(u(t, x)) =0. (5)

If k> 2 and g is C* on a neighborhood of x, then the solution u is C* on a
neighborhood of the characteristic (t, x + t9(x),0 <t < T.

Proor. If ue C}([0, T[ x R?) is a solution, then u is constant on charac-
teristics, so the value of u at (¢, x) is equal to the value at all points (¢, x) +
(¢ — (1, u(t, X)), the characteristic line through ¢, x. Setting ¢ = 0 yields (5).
The Implicit Function Theorem shows that this equation is uniquely
solvable for u(t, x) while 0 <t < T. The key estimate is that if G(¢, x, u) =
u — g(x — tu),then dG/du > Oaslongast € [0, T[. This proves both existence
and uniqueness.
, The final regularity assertion follows from the regularity part, as opposed
to the existence part, of the Implicit Function Theorem. O
As an example, consider data, g € C?, which is piecewise smooth with
singularities at @, < a, < -** < ay. Then the coastruction of the solution u
using characteristics shows that the solution is piecewise smooth with singu-
larities propagating along characteristics. These singularities travel with the
local speed of propagation u. Such signals are called sound waves. Note that
the same name is used for the solutions in first-order perturbation theory in
Figure 1.4.2. The common feature is the speed of propagation.
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The formation of singularities at time T, starting with C™ initial data, is a
purely nonlinear phenomenon. The cause is the fact that the speed of propaga-
tion, equal to u, depends on the amplitude u of the solution. We have seen
that if the speed depends only on space and time, solutions exist globally.

Examining the formula for the solution, the behavior as the breakdown
time approaches is not difficult to describe. Between the approaching char-
acteristics in Figure 1.9.3, the solution u must decrease from g(a) to g(b) on
an ever-decreasing interval. The curve steepens and at time T, the curve has
steepened so much that a vertical tangent arises. The wave steepens and then
breaks (Figure 1.9.4).

There is an even more explicit example of breakdown. Its construction is
based on the observation that solutions of (3) are mapped to solutions by the
scaling law

u(t, x)— u(st, 7x).

We seek solutions which are invariant under this transformation law (called
self-similar solutions). A function is self-similar in this context if and only if it
is positive homogencous of degree 0 in ¢, x, that is, u(t, x) = u(l, x,'t) = Y(x,1)

T e (E) 00
ey ()00)-3))

Thus u satisfies the Burgers equation in t > 0 if and only if y(s) satisfies

V'(s)¥(s) - s)=0.

Thus the graph of ¥ consists of two horizontal plateaus, where ¢’ = 0, con- .
nected by a segment of the line Y = s (Figure 1.9.5). The graph of y is also the
graph of u|,.,, s0 u is not C! but Lipshitz continuous uniformly in each set
t 2 ¢ > 0. As tdecreases to zero the graph of u(t, x) = Y(x/t) is ¢ simply scaled,
so the connecting segment steepens to slope /1.

The function v(t, x) = u( —t + 1, — x)is a solution which is Lipshitz contin-
uous in t < 1 and which steepens as ¢ increases toward t = 1.

The last paragraph is only informative to the extent that one is willing to
accept a solution v which is not C*. A similar situation arises if one accepts
g(x — ct) as solution of u, + cu, = 0 when g is only Lipshitz continuous. The
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Figure 1.9.5

Theory of Distributions systematizes such so-called weak solutions. One good
reason to accept generalized solutions is if they are limits of genuine classical
solutions. For example, if g, is a sequence of smooth functions converging
uniformly to g, then the solutions g,(x — ct) converge to g(x — ct). Similarly,
if Y, is a sequence of smooth increasing functions converging uniformly to
and satisfying ¥, < 1, then the solutions of the Burgers equation with
4, (0, x) = Y .(—-x) will exist for 0 <t < 1, and for any € > 0 converge uni-
formly on0 <t <1 — ¢to v. Thus, v is a reasonable generalized solution.

Surprisingly, solutions of the Burgers equation can be extended past the
blow-up at t = T to be discontinuous solutions which are still important for
the physical interpretation. The discontinuities lie along shock waves, which
are important in the modeling of combustion and supersonic flight (see [La],
[Sm]). We have just been studying spontaneous shock formation.

PROBLEMS

1. Suppose that P(¢) = P,(c) is a homogeneous constant coeflicient partial differential
operator and that L is a characteristic hyperplane. Find a piecewise smooth solution
uto Pu = O which is singular at every point of T. Hint. Use the hint of Problem 1.7.2.

2. The following steps provide an alternate proof of Theorem 2:
(i) Derive a partial differential equation satisfied by u,(t, x). Hint. Apply the result
of Problem 1.4.2to u(t, x + o). Alternatively, differentiate (3) with respect to x.
(ii) Let y(t) = (¢, a + g(a)t) be the characteristic through (0, a) and y(r) = u,(7(f)).
Show that y’ + y? = 0 and y(0) = g’(a).
(iif) Show that y blows upatt = —1/g’'(a). Prove Theorem 2 by choosing a appro-
priately.
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Discussion. Comparison with y’ + y* = 0 is acommon method for demonstrating
blow-up. Problem 1.1.5 is another example.

. Suppose that p(s) is a strictly convex function of s, that is, p”(s) > O for all s. Study
shock formation (at ¢ = 0) for the conservation law,

Y, + plu), =0,

by constructing all self-similar Lipshitz continuous solutions in ¢t < 0. Hint. Find
an analogue of Figure 1.9.4.



CHAPTER 2

Some Harmonic Analysis

§2.1. The Schwartz Space £ (R‘)

The space & consists of smooth functions which together with all their
derivatives decay rapidly to zero as x — oc. Itis very useful in Fourier analysis,
as it forms an easily manipulated family of functions which is mapped iso-
morphically onto itself by the Fourier transform. From this starting point, the
classical theorems of Plancherel and Hausdorf- Young follow by straightfor-
ward completion arguments. This convenient formulation was exploited by
S. Bochner. It was the inspired idea of L. Schwartz that an extension by
duality, rather than continuity, gives a far-reaching generalization of the
Fourier transform which has been crucial in modern analysis ever since. It is
the goal of this chapter to give a brief description of these ideas. At the same
time we review the basic techniques of the Theory of Distributions. It is
assumed that the reader has a modest familiarity with the elementary Theory
of Distributions. A brief introduction is presented in Appendix A.

Definition.
L (R%) = {ue C°(R*):Va, B e N, sup |x*u(x)| < oc}.

xe R

Z(R®) is a vector space. Membership is tested by the countable family of
seminorms

IS lep = sup [x*3*f(x)|. 1)

Functions in & are smooth and all derivatives tend to zero faster than any
power of | x| as x — oo.
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ExampLEs. 1. CP(R?) ¢ #(RY).

2. e71' e &(RY). Similarly, e *=""*, and for ¢ >0, e"!**"* pelong to
F(RY).

3. No matter how large N is, (1 + [x[2)~" is not in #(R9).
4. Not all members of £ (R?) decay exponentially (Problem 1).

Definition. A sequence g, € & is convergent to g in & if and only if (Va, B)
("gn - g“a.ﬁ —0asn— x)

Convergence, like membership in &, is tested by a countable set of semi-

norms. It is easy to show that g, converges to g in & if and only if p(g,.g)
tends to zero where p is the metric

= a1 N9 = Slas )
plg.f) =22 1+ 1g—fll,, “

This metric endows & (R?) with the structure of a metric space.

Proposition 1. If g € #(R?), g(0) = 1, then for any [ € ¥(R),
FLlimg(ex)f=f as e¢-0.

The reason for this is that for ¢ small, g(ex) is a long flat plateau of height very

close to | (Figure 2.1.1). Multiplying by g is close to multiplication by 1. The
proof of Proposition 1 is Problem 2.

Corollary 2. CP(RY) is dense in ¥ (RY).

Proor. Choose g € C3(RY) with g(0) = 1. Then CF(R?) 2 g(x/n)f — f, by
Proposition 1. . 0

AL ~

Figure 2.1.1
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Propeosition 3. #(R¥), p is a complete metric space.

Proor. If g, is a Cauchy sequence, it follows that for any compact set K < R?
and any a, 8%, is uniformly bounded on K. The Arzela-Ascoli Theorem
implies that the g, converge to a limit g € C*(R?), the convergence of all
derivatives being uniform on compact sets.

For any compact K and a, §

sup [x*¢’g| = lim (SUP lx’é‘g..l) < lim supfig,ll, 4.
K A~ K
As the right-hand side is independent of K we find that {|g||, , is bounded by
the right-hand side, so g belongs on .

Finally,

sup |x*¢#(g,, — g)| = lim (s?‘p |x*cP (g — g.)l) < lim (g, — gnll sy
Given £ > 0, choose N so that if n, m > N, lig,, ~ g.1.. p <& It follows that
form > N, |lg, — gl..4 < & proving convergence in &. 0O

A vector space like #(R¢), which is a complete metric space whose topology
is defined by a countable family of seminorms, is called a Fréchet space. The
basic principles of functional analysis; the Closed Graph Theorem, the Uni-
form Boundedness Principle, and the Hahn-Banach Theorem are valid in
Fréchet spaces. We will not need these results.

Proposition 4. If Fe C*(C*:C) with F(0) =0 and f;e S (R*) for | <j <k,
then F(f,(x),..., /i(x)) € L(R?). The map from L (R} to F(R?) so defined is
continuous.

Warning. The hypothesis on F does not mean that F is holomorphic. It means
that (&,, 3,)* F(x + iy) exists and is continuous for any 2. Holomorphic func-
tions are those with (¢, + id)F = 0.

ExampLEs. 1. sin(f(x)) € & whenever f € &. Here f is the complex conjugate
of f.

2 The map ¢, ¥ — @y is a continous bilinear map of & x & to &.

PROBLEMS

1. Construct a u € ¥(R) which is not exponentially small at infinity. That is, for all
a> 0, ué L°(R).

2. Prove Proposition 1.




64 2. Some Harmonic Analysis

3. Prove

Proposition.
() If M e C*(R*)and
(Va)3N,c)  (1&*M] < c(1 + 1x)"),

then the map [+ MY is a continuous linear transformation of ¥ (R*) into itself.
(1) If in addition
(In,c>0) (IM(x)| 2 (1 +[x])7%),
then the mapping is one-to-one and onto with continuous inverse.

4. Prove Proposition 4.

§2.2. The Fourier Transform on #(RY)

The Fourier transform and its inverse serve to express a function u as a
superposition of oscillatory exponential functions e™'¢*%>, £ € R?, according
to the formula

u(x) = (2m)~*? Je“""ﬁ(é) dé. (1)

The goal of this section is to present the basic properties of the Fourier
transform and, in particular, to prove the inversion formula (1).

Definition. For u € & (R*), the Fourier transform of u is the function defined by

Fu(é) = a(é) = 2n)~*? j'e"“"u(x) dx. (2)

Here {x, &) =) x;&. We will often abbreviate (x. §) as x§.

ExaMPLES. 1. Foru = e *'? ¢ #(R)

b -]

a(¢) = (2n)~'? J e %o~ dx.

-
Complete the square in the exponent to {ind
b

’-2- + ixE = (x? + 2ix&) = ({x + iE) + &),

Thus

* o

Vi = e¥P e~ X2 gy
™ B - ]

»

Jr
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where T is the contour Im z = { traversed from left to right. Let I, be the
segment on [ running from —R + i§ to R + if (Figure 2.2.1). Since the

integrand decays exponentially fast as |z| goes to infinity along I, the integral
is equal to the limit

R~

= lim I e~ gz,
Ta

By Cauchy’s Theorem, the integral over I', is equal to the integral over A,,
where I’y — A, is equal to the boundary of the rectangle whose side opposite
[x is the interval { — R, R] on the x-axis. Thus our Fourier transform is

= lim J. e 2 4z,
Ag

R-=w

As R — oc, the integrals over the vertical sides of the rectangle tend to zero
exponentially rapidly and we find

2. To compute the Fourier transform of the multi-dimensional analogue,
u = e "2 g #(R’), note that u = [,/ Fubini's Theorem yields

ﬂ(f) — (2,:)-#2 Irl e-k,{,e-x}n dé‘ .o dc‘

=[] 2%)7'7 | e~ *hse*i2 d; =[] eI = R,
J

For any u € #(R‘), 4 is bounded, and
V8]l Loy S (27)" il Lo pey < Cli(] + %1 ul Lo (3)



66 2. Some Harmonic Analysis

Differentiation under the integral (Problem 1) shows that 4 € C*(R‘) and
D3 = & ((~x)u). @)
Integrating by parts |«| times in the definition of # u yields (Problem 2)

o~

F(D2u) = (2r)"4? | e ***D%u(x) dx

r

= (2n)"9? | ((— D Fe *)u(x) dx = E&*Fu. ($)

L

Thus, if P(D) is a partial differential operator with constant coefficients, then
F (P(D)u) = P(Q)a. (6)

This simple formula is the main reason for introducing D = —ic.

The computation of the Fourier transform of e~ will play a central role
in the analysis of #. We next present a second derivation starting from the
fact that the functionu = e~*'? ¢ &(R) satisfies the ordinary differential equa-

tion ¥’ = — xu. Since this equation is homogeneous, linear, and first order, the
general solution is a constant multiple of u.

Take the Fourier transform of the differential equation to find

i = ;(84:2). hence (¢, + {)a =0.

Thus the transform satisfies the same equation as u, so

The constant is evaluated using
|

AN

Proposition 1. For any u € & (RY), i € (R), and the map ur i is a continuous
transformation of & to itself.

= 1.

c =u(0) = J-e"‘"" dx

PRroOF. Estimate the #(R{) seminorms of & as follows:
N, 5 = “f'agﬁ“vm“) = |F (a;(x‘u))ll,,.mg.
< r)y 23 (xPu)ll Logey < ] + 1x1) 183 (xPu)ll Leirgy < X
Ifu, - uin &, apply this estimate tou, — uto show that fi, — ull, ,converges
to zero. 0
The Fourier transform behaves well with respect to dilations and translations
(o,u)(x) = u(Ax), is called the dilationby 1e R,
(Tauw)(x) = w(x — h), is the translation by h e R’.
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Proposition 2. If u € (R*), then for any h € RY, A1 & R\O:
(i) F(tyt) = F(u(- = b)) = "™ F(u) = e~ ™a(¢).
(it) F(e™*u) = 1,F (u) = G4(- — h).
(ili) & (0,u) = 12| ~4(6,,F W), that is, F (,u)(§) = [A] “*(Fu)(&/A).

PROOF. (i) In [e~***’u(x — h) dx make the change of variable y = x — h to
find fe~* @ **%u(y) dy. Assertion (i) follows.

(i1) Left to the reader.

(iii) In § e~¥$>u(ix) dx make the change of variable y = 1x with Jacobian
|det dy/dx| = |A|%. This yields { e~ >u(y)|A| ™ dy, and (iii) follows. 0

Finally, we require a simple duality identity. Denote by (-, ) the pairing
.9~ [fgdxfrom¥ x & toC. Then

forallp,y e, (Fo.¥) =<0, F¥). ™

PRroOF. K(&, x) = (2n)"%2e~'= is the kernel of the integral operator #. Note
that K is symmetric under interchange of x and . Then

(Fo.¥)= JM&)(J K(§, x)o(x) dx) d§.

Since K(&, x)¥(&)o(x) € L} (R?, dx d&) Fubini’s Theorem justifies an inter-
change of order of integration giving

- ﬂ PIK (& W () dE dx = f«’(x) (J"‘ (x. S "‘) &
= (0. F ). =

Virtually the same proof yields an identity involving the scalar product in
L}(R¢:C)

(@ VIppa = L‘ @(x)¥(x) dx,

which is linear in the first slot. One finds
(Fo.¥)=(p,F*). Yo,y e LR, (8)

where F*, called the Inverse Fourier Transjorm, is the integral operator with
kernel (27)74%¢'*¢. The difference between F* and F is the minus sign in the
exponent.

In the proof of the Fourier Inversion Formula, we need a simple result about
approximate  functions, £ ~%j(x/e) (Figure 2.2.2).

The next proposition is more than sufficient.

Proposition 3. If je L'(RY), fj(x)dx = 1, and ue L=(R?) is continuous at 0,
then

lim Iu(x)e" j(x/e) dx = u(0).

-0+
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Figure 2.2.2

ProoF. Replacing u by u — u(0), it is sufficient to consider the case u(0) = 0.
Given a challenge number, n > 0, choose R > 0 so that lu(x)l < n/lljl. for

Ix| € R. Then
" N .(x)
< — £ -
||J|u.[ Nz

J- us"j(f) dx
Isl SR €
< lul,. j s"j("-‘)
x> R €

-d: f d
J.tx|>ku8 1(5) *
= lull,. J. 1Jj(x)| dx = o(l).
x> R/e

o

Theorem 4 (The Fourier Inversion Formula). For all u ¢ & (R?)

dx =»n.

For the rest

dx

Thus

hm <n. O

u(x) = (2n)~43 I (Y dE = FrFu.
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ProoF. First consider the case x = 0. Let v(x) = e~ %P2 Since fvdx = (2n)y¥?
and $Fv = v, Proposition 3 shows that

(21)**2u(0) = lim <u, e %v(x/e)) = lim {u, e, 0)
s—0 s—0

= limu, ¢ 6,,(Fv)) = lim{u, FloW))
= lim{(Fy, o,v).

Now, a.v() = v(e§) = v(0) = 1 pointwise, and jo,v| < 1. Furthermore,
Fue P(RY) c L'(R?). Lebesgue's Dominated Convergence Theorem shows
that the right-hand side converges to j (Fu)(&) d&. The proof of the special
case, x = 0, is complete.

For the general case, note that

u(x) = (1,u)(0) = 2r)™ " If (t_xu)(§) d§
= (2n)"9? je"‘ﬁ(é) dé¢  (by Proposition 2 (i)). a

This proof rests on little more than the identity Fv = v. The explanation
why this is sufficient is that the elementary properties of ¥ and #* imply that
(ue (R F*Fu = u} is a closed linear subspace which is invariant under
translation and dilation. It is not hard to show that the span of the translates
and dilates of our v form a dense subset of F(R’) (Problem 4).

That F*F =1Id on & implies that ¥ is onc-to-one and #* 1s onto.
However, F* diflers from # by a simple sign change x+~» —x in the kernel,
so we have F°* = RF where & is the reflection operator (Ru)(x) = u(—x).
Then & = A F = RF* is also onto. Summarizing, we have proved the
following corollary.

Corollary 5. The Fourier transform, #, is a linear bijection of ¥ (R’) to itself
with inverse equal to F*.

There is a parallel theory of Fourier senies of smooth 2r multiply periodic
functions whose Fourier expansion is

u(O) - (zn)-dll z u, ei (n.0>,
acl2d

u, = (2n)"*? J. u(B)e"i " db.

[0, 2=)¢

The transform u» {u,} is a bijection of smooth multiply periodic u to the
space s of rapidly decreasing complex sequences. That is, sequences such that
|n|*u, € I® for all k. The analogue of Plancherel's identity (2.3.2) is called
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Bessel’s identity

p
T luyl? = _| |u(6)|? db. ©)
(0. 2x)¢
An elegant derivation of these results, using the framework of §2.5, can be
found in Donoghue [Don].

PROBLEMS

l. Carefully justify the differentiations leading to the formula D\F (u) = F (- xu).
Then prove that D*F (u) = F ((~ x)*u). Hint. Induction on |x}.

2. Carefully justify the integration by parts leading to the formula & (D) = §;Fu.
Then prove & (D*u) = £*Fu. Hint. Induction.

3. If A is an invertible linear map of R’ 10 itself and u € S(R?), define u, by u,(x) =
u(A4~'x). Compute a formula for the Fourier transform of u,. Prove that # (u,) =
(Fu), for all uif and only if A is an orthogonal transformation.

DiscusstoN. The special case of A equal to a reflection was used in the discussion
of the Fourier Inversion Formula. A simple consequence of this special case is that
the Fourier transform of an odd (resp. even) function is odd (resp. even).

4. Prove that the linear span of the translates and dilates of exp(~—|x|3/2) are dense

in #(R’), thereby giving an alternate derivation of the Fourier Inversion Formula.
Hint. For u € CP(R*) consider

2

/2) dy.

e Iu(y) cxp(-

S. Show that if u € & satisfies F(u) = i"y, thenv = (¢, + x,)u satisfies F (v) = i**'v.
Drscussion. Thus w = (7 + x)*(exp(~— | x|%/2) satisfies & (v) = v provided |af is a
multiple of four. The Gaussian is by no means the only function which is its own
Fourier transform.

The function w is an eigenfunction of # for all a. These cigenfunctions form an
orthogonal basis for L*(R?). This gives the speciral decomposition of the unitary
operator & from L?(R?) to itself (Theorem 2.4.4). These eigenfunctions were well
known in the nineteenth century and give yet another approach to the Fourier

Inversion Formula. In fact, this is the derivation in Weiner's text on the Fourier
transform.

X =y

§2.3. The Fourier Transform on LP(R?): 1 < p < 2

The Fourier transform, defined on #(R?) can be extended to more general
classes of functions and distributions. Linear maps are commonly extended
using one of two algorithms. The first is extension by continuity.

Proposition 1. Suppose that X is a normed linear space, E < X is a dense linear
space,and Y is a Banach space. If T: E — Y is a continuous linear map, that is,
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(3c > 0)(Yee E), | Tely <cllely,

then there is one and only one continuous linearmap To,i: X — Ywith T, lg =T

As an example, we extend the Fourier transform as a continuous linear
map of L' (R*) to L=(R*) and from L*(R’) to itsell. Toward this end, we need
a simple approximation theorem.

Proposition 2. C2(RY) is dense in L?(R?) for | < p < .

Proof. The set of finite linear combinations of characteristic functions
of bounded measurable sets is dense. Thus we need only prove that if 4
is bounded and measurable, then for any ¢ >0, there is a2 9 € Cg’ with
n‘P - XA “ P <E&

Given € >0, choose compact K and open €, with Kc A4 c @ and
p(O\K) < €. Choose p € CF(R") with0 < 9o < |, supp(p) c €, and ¢ = 1
(Problem 1). Then

le —x4ll5 = Ilcp = xl? < L\‘ 1<é. 0O

Basic Estimates. If f ¢ #(R?), then
1F S s 20 1L, (1)
IF S = WSl = [Ed A TES (2)

ProoF. The first estimate is immediate and was already observed in (2.2.3).
For the second compute

IF = FLFN=UFFN=ULNH =i

The estimate for #*f follows in the same way from the identity FF* = Id
(Corollary 2.2.6). 0

Definition. C(R?) denotes the set of u € C(R?) such that lim, ., u(x) = 0.

Such functions are said to vanish at infinity. C‘(R‘).is a closed subspace of
L™(R*), so is a Banach space in the supremum norm. C is the closure of Z(R4)

in L°(RY).

Theorem 3 (Riemann-Lebesgue Lemma). #: £(RY) — S (R%) extends uniquely
to a continuous linear map L'(R*) = C(R') with norm equal to (2r)™*". For

ue L' (R’) the value of (Fu)({) is equal to the absolutely convergent integral
(2r)~42 § e~ **u(x) dx.

Proor. The existence follows from the density of & in L' together with
basic estimate (1). The upper bound for the norm is achieved at 2(0) for
any positive u € &. To prove the formula, choose u, € S, u, — u in L. Then
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Fu,— Fuin C.In particular, #u,(S) = Fulf). Now
Ry Fu, &) = Ie"“u.(x) dx - Ie""u(x) dx,
since the difference of the two integrals is dominated by ||u, — ul| ;.. O

Theorem 4 (Plancherel). The Fourier transforms % and #* on & extend
uniquely to unitary maps of L? 1o itself satisfying F*F = FF* = I.

Proor. The existence of isometric extensions for # and # * follows from the
basic estimates (2).

That FF* = F*F = | follows since both sides are continuous on L2 and
they are equal on the dense subset, & Unitarity follows. O

A typical u in L% is not in L' (e.g. (1 + |x])™" € L%(R)) so [e~*u(x) dx is
not absolutely convergent. Thus, the Fourier transform of a typical element
of L* is not given by the usual integral formula.

For ue L' n L% we have given two meanings to Fu. Thinking of u as
an element of L' (resp. L?), Fu is defined as an element of C (resp. L2). It is
important to know that the two results are equal. Equality is interpreted as
either equality in the sense of distributions or equality almost everywhere. To
prove the latter, fix R > 0 and B = {|x| < R}. Choose u, € & with u, = u in
both L' and L2. Simple plateau cutofl. followed by convolution with an
approximate delta, achieves this goal. Then

L*lim Fu,= Fou and  C-lim Fu, = Fu

In particular, Fu, converges in L?(B) to both (#,.u)| and to (#,:u)|s. Thus
F:u = Fp u almost everywhere on B.

If u belongs to L* we obtain classical formulas for the Fourier transform
by choosing u, with u, = u in L2. Then #u = L%-lim,._ Fu,. For example,
if one takes u, = < g1t OF U, = e”**ly, one finds

Fu=L21lim (2x)"9? J e~ =u(x) dx
Ix|<R

R-x

= L2-lim (2r)~9"? J'e""'e““u(x) dx.
-0
Note that these are L? limits, not limits almost everywhere.

F maps L! to L™ with norm (2n)"4? and L? to L? with norm 1. It follows,
by interpolation, that & maps the L? spaces “between” L' and L? to those
“between” L= and L2. The precise result is given by the Riesz—Thorin Con-
vexity Theorem. This result asserts that if K is bounded from L’ to L* and
bounded from L" to L*, then K is bounded from L" to L*for0 <0 <1,
where r,, s, are defined by

1 1 1 1 1 1
—_0;-4-(1—0)’—. —-:9—-}-(1—0);:. (3)

Te o 1 Se So
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Two conventions are in fotce here. First, r and s are between 1 and infinity,
and second, in (3) we take 1/o0 =0, 1/0 = co.

Definition. A linear map K: L (R¢) = £(R) is of type (r, s) if and only if

Bc20(Voe L(RY), 1Kol Luag < clollcpa.

If r < o, then & is dense in L” and K has a unique extension to a bounded
linear map of L’ to L*. For r = co, the extension maps C(R‘) to L*.

Theorem § (Riesz-Thorin Convexity Theorem). Suppose that fori=0,1,
1 <7, s,< o, and K is a linear map which is of type (r;,s;)- Then for all
8 € [0, 1], K is of type (ry, So) where rq and s are defined in (3). Furthermore, if

(vuel"), IKuly<Blul, i= 01,
then forall 8¢ (0,1}, ue L",

IKull,, < BB} *lull,

An clegant proof using Hadamard’s Three Circle Theorem from complex
analysis can be found in many functional analysis texis.

The above theorem shows that the set of points (1/r, 1/s) € [0, 1] x [0, 1],
such that K is of type (r, s) in a convex set, and the norm of K from L' to L*
is a convex function on that set.

Corollary 6 (HausdorfT-Young Inequality). The Fourier transform ¥ . & ~» &
extends uniquely to a bounded linear map from L’ to L' for 1 Sp<2,
1/q¢ + 1/p = 1. Furthermore, for such p and any f€ L®,

[ Full Lo S (2r) 7427222 u| .
Proor. Apply the Riesz-Thorin Theorem with ry = 1,5 = oc,ry = 2,5, = 2.

O
The type of F thus contains the segment sketched in Figure 2.3.1.

t 1
(2.2

Figure 2.3.1
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PROBLEMS

1. If & is a compact subsct of the open set € in R, construct a ¢ € CF(€) with
0 < ¢ < | and ¢ equal to 1 on a neighborhood of X'

"~

Let u = e *)30. o; € L' (R). Compute the Fourier transform of:
(a) u; (b) thereflection Ru;  (c) t u;
(d) e**u; (¢) (sin x)u.

3. ForceC\Randk=23,.... use the calculus of residues to compute the Fourier
transform of 1/(x — c}* € L'(R).

4. For the functions v = ¢ and u = (1 + x?)~'€ L}(R)verify the Fourier Inversion
Formula by computing the Fourier transforms and then applying directly #*.

DiscussioN. This special case can be used as the keystone of the proof of the
inversion formula in the same way that we used the Gaussian, exp(— x3/2).

§2.4. Tempered Distributions

The three spaces in which & acts most naturally are #(R¢), L*(RY), and
&’ (R). The last, the dual of #(R?), is called the space of tempered distributions.
The extension of F from & to & is by a duality argument quite diflerent
from the extension process in §2.3. This section is an introduction to %'
including a discussion of the extension.

Recall that the distributions T € 2'(R?) are linear functionals on 2(R?) =
Cs (R®) (see Appendix A). The tempered distributions are those distributions
which extend to continuous linear maps from £ (R4)to C. Since 2(R?) is dense
in &(R?Y) the extension is uniquely determined.

Definition. A tempered distribution is a continuous linear functional on & (R¥),
that is, a continuous linear map from & (R’) to C. The space of tempered
distributions is denoted &'(R?).

It is not difficult to verify the following criterion analogous to boundedness
in the normed linear context.

Proposition 1. A linear map T: &#(R*) — C is continuous if and only if there
exist n € N and c € R such that for all p € ¥ (R*)

KT.odi<e Y  Ix*®0ll . ne. (1)

{al Sn. 18] <n

Denoting the sum on the right as p(¢), the sequence of norms p, < p, < p,
... define the topology for &

Corollary 2. A distribution T € 2°(R’) extends uniquely to an element of &'(R*)
if and only if there exist ne N and c € R such that (1) holds for all ¢ € D(R?).
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In particular, we have
2(R*) c &(RY) c 7' (R?) <« 7' (RY).

ExampLes. 1. If fis a Lebesgue measurable function on R? such that for some
M, (1 + |x]|®)"Mf € L' (R"), then the distribution defined by fis tempered since

o) =1+ 1xP)Y M (1 + I1x12Me)
SN+ 1xI27 M + 1x1P) ol Lo < crpand@):
In particular, #(R?) =« &'(R*).

2. If g is a Borel measure such that for some M, (1 + |x}2)™¥u is a finite

measure, then the distribution defined by u is tempered. Reason as in Example
1 to show that

e < (1 + lxlz)- Bl tor vae I(1 + lxlz) Pllzeng < C.D3u(0).

. If fe LP(R?%), 1 < p < o, then fe & since these functions satisfy the
condmon of Example 1, if one chooses M so large that (1 + |x]*)"¥ e LY(R¢)
and then uses Holder's inequality.

Definition. A sequence T, € ¥'(R*) converges to Te &'(R?) if and only if for
all u e ¥ (RY)

(Th.o)>—=»<T.¢) as n—c.
We write T,—~T or #-lim T, = T.

ExaMPLE. If ¢ € 2(RY), ¢(0) = 1, then

S’ -im <p(n)T T (2)
Note that ¥ (RY) < 2'(RY) so if T € &, then ¢T is a well-defined element of
2'(RY) for ¢ € C*(R?). If ¢ € CZ, then T € & <= &', so the assertion makes

sense.
To prove (2), note that for ¥ € &, <o(x/m)T, ¥)> = (T, ¢(x/n}y)> and
o(x/m)y — ¢ in & Thus (T, o(x/n)y> = (T, ¥ ), thanks to the continuity of T_
O

The topology in ¥’ associated with this convergence is called the wcak-star
topology defined by the (uncountable) [amily of seminorms

Ty =KT ¥, e

We will have no need for topological subtleties but note in passing that this
topology in &’ is not metrizable.

Our next, and principal, concern will be to extend to &' the basic linear
operators of analysis, for example, d* and &. The extensions will be proved
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to be sequentially continuous and it is important to know that such extensions

are uniquely determined by their values on ¥ This follows from the density
of ¥in ¥

Propesition 3. #(R?) is sequentially dense in ¥'(R*).

ProoF. Choose ¢ € 2(R‘) with @(0) = 1. Thenfor n=1, 2, ..., o(x/n)T €
&'(RY) c &£ (RY).

Choose j € 2(R?) with [j(x) dx = I and j(—x) = j(x). Let j,(x) = n%j(nx), so
that j,— 4. Then ¢(x/n)T has compact support so Proposition 4 of the
Appendix implies that

T, =j.» ((p(s) T) e 2(RY) c Z(RY).

It remains to show that for all Yy € & (T, ¢) = (T, ¢¥)>. Now (T,, ¥) =
(T. (p(x/n){ j, + ¥)). Thus it suffices to show that ¢(x/n)(j,*¢) =¥ in &
Toward that end, compute

o(2)oer0 -0 [o()o(e+ ) - b
n n n

For x e N* B e N4 apply x*@* to this difference to obtain a finite sum of terms
of the form

c(x, B.7) .[5‘-' cip ('—:) {f‘f Y (x + ;) -3 ""lﬁ(-ﬂ}i( ¥)dy.

the sum over those ye N with0 <y, < B fori = I, ..., d. The difference of

¥'s is estimated using the mean value theorem and the fact that the derivatives
of Y decrease faster than any power

O‘.

121y (x + ") - ST S eyl + ey,

n

Performing the y integral yields the estimate

x1*(1 + |xi)~¥

——— — e -

Choosing M > |aj the result follows. O

Given a continuous linear operator L: ¥ — ¢, the transpose L' maps
S-S ForTe ' (RY), L'T ¢ & is defined by

LT, o) =LT, Lp) forall 9e & (3)

The next proposition shows that the identity can sometimes be used to extend
L.
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Proposition 4. Suppose that L: & (RY) - #(R’) is a continuous linear map and
that the restriction of the transposed operator to &, L'| 4, is a continuous map
of & to itself. Then L has a unique sequentially continuous extension to a
linear map L: &'(RY) = &'(RY) defined by

(LT,o)={(T.L'¢), joral Te¥, ¢pe¥

ProoF. If L is such an extension, T € &, and p € &, choose T, € & converging
to T in &'(RY). Then

(LT,, 9> =(T,,L'p).

Passing to the limit n — oo yields

(LT, 9> = (T, L'g). @
Conversely, defining L by this identity yields a sequentially continuous
linear extension. O

This proposition identifies when passing the operator to the test function
yields a good extension.

The extension is continuous for the weak-star topology on &', a fact we
will not need.

For general L, one will not even have L'p € & for ¢ € & The hypothesis
on L' is very restrictive. However, the following list shows that many oper-
ators are included. The translation and dilation operators were defined before

Proposition 2.2.2 and the multiplication operators M were defined in Problem
2.13.

L L,
& (—éy
s T-a

Y k-‘al.‘l
F F
M(x) M(x)

As the demonstrations of the assertions in the table follow a single pattern
we consider only the formulas for (¢*)| , and F'| .
For Te & and ¢ € &, we have

(YT, > = (T, (") o).
If T € &, the right-hand sidec is equal to

JT(I)GW(JC) dx = I (=8 T(x)o(x) dx = {((=0)*T, p>.

Thus, for such 7, (0*Y T = (~-0)"T.
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Similarly, for T € ¥ and p € ¥,
(F'To)=(T. Fo).
For T € ¥ formula (2.2.7) shows that this isequalto (F T, ¢),whence F'| , = &,

Theorem S. Each of the operators M, &%, t,, 6,, F from & to itself has a unique

extension to a sequentially continuous map of & to &'. The extensions are
defined for Te &', p € &, by

(MT,¢) =T, My).
(T, ¢> = (T.(— ),
(LT.9> =T t_,p),
(aT.¢) =<T.k™ 0, ,0).
(FT.o)=(T.F o)

Ali the operators except # are well defined as maps of 2'(R%) to itself. Thus,
for Te ¥ < &', the action on T yields a well-defined element of &'. The
expressions above show that the two definitions agree for test functions in 2.

What is asserted is that the expressions are still meaningful and continuous
for test functions in &,

ExaMPLE. The smooth function u = sin(e*) is uniformly bounded and so
defines a tempered distribution. The distribution derivative of u must be equal
to its classical derivative, namely, ¢ = e* cos(¢*). which grows exponentially
as x tends to infinity. Thus {ve dx is not an absolutely convergent integral
for all pe & (R’). Nevertheless, ¢ is a tempered distribution since it is the
derivative of a tempered distribution. This seemingly paradoxical result is
resolved by observing that the map Z 3 ¢ — [ v¢ does extend to a tempered
distribution as one sees immediately from the identity, valid for ¢ € 2.

I(pt‘ dx = J-qn"u dx = —I uCy dx.

Thus [ ve| < I¢0lly < cpyaa(®).
Most basic identities involving these operators in & extend to ., since &
is sequentially dense in . For example, the Fourier transform on . satisfies
FDT = 37T, F*FT =T, F(t,T) =™ FT. (5)

To prove the first note that # D* and &*# are sequentially continuous on &
and they agree in &, thus forany T € ¥’ choose T, € ¥ with T,— Tin %", then
FDOT=ImFDT,=lim{FT,=FT.

The other identities in (5) are proved in the same way. These identities allow
for clegant manipulation of F as the following examples illustrate.
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ExampLE. Compute the Fourier transform of 1.
Using the definition of # on & the Fourier Inversion Formula yields

(FlLe)=(l,F¢)= Jf (&) dE = 2r)" p(0) = <2m)*?4, @).

Thus
F1 = (2n)436. (6)

Formula (6) is equivalent to the identity (2Qn)~*? ] F o(&) d¢ = ¢(0) which
implies the Fourier Inversion Formula.

We next give an alternate derivation of (6) without using the Fourier
Inversion Formula, thereby giving Laurent Schwartz's elegant proof of
Fourier's Theorem.

For x # 0, D*1 = 0. Thus, for 2 # 0,

EF1=%D1=0.

In particular, (Y £)#1 = 0. Thus, supp F1 < {0}, so there are constants
cg € C such that

i<~

To evaluate the ¢, for x # 0, use the fact that &*F 1 = 0. Choose ¢ € £(RY),
o(E) = 1 for |&] < 1. Then for a # 0, (F, §%¢) =0, but

0=(F1, &)=Y <y, 0> = 3 (=P (5¢)l¢=0-

Since ¢ is constant on a neighborhood of the origin the summands vanish at
¢ = O unless f = . In that case, the sum is equal to 2! c,, 50 ¢, vanishes uniess
2=0. '

Thus F1 = ¢4. To evaluate the constant ¢ apply ¢d to e™*? to find

¢ ={cd, e ¥y = (F1,e¥?)

=(l,Fe¥?y= J’e“’“ dé = 2n)*.

A third computation of F1 starts with 1 = & -lime™"*""2, Applying F
yields
F1=Ilim y(e'lx/nl’IZ) = lim(zu)-d/znle-laxlz.'z = (2n)"426.
This argument is only a slight variant of the proof of Theorem 2.2.5.

ExaMPLE. Compute 9.
The definition of # yields

(Fo,p)=(5, Fo) = (Fo)0)=(2r)" J'fp(X) dx = {(27)™?, @).

Thus F6 = (2n)™42,




80 2. Some Harmonic Analysis

The next example illustrates how analytic continuation can be used in
computing Fourier transforms. The result is nesded in our study of initial
value problems.

ExamPLE. For Re(a) = 0, a # 0, compute F(e™**'?),
For any ¢ € & (e™**'2, y) is holomorphic in Re(a) > 0 and continuous in
Re{a) = 0. Thus
(Fe 'R y) =(e 2, Fy)

is holomorphic and continuous in the same half-space.

For a € R, the Fourier transform of exp(—ax?/2) is computed by writing
it as exp(—(a'?x)?/2) and using the dilation identity in Proposition 2.2.2 (iii)
with u = exp(—x?/2)and 1 = ﬁ to find

ye-alez = a-me-xlm.
Thus
(Fe xR Yy = g™972 Ie""" Y(x}dx for aeR,.

Furthermore, the two sides are holomorphic in Re(a) > 0, continuous in
{Rea > 0 and a # 0}, and equal on R, . The unique continuation principle
for analytic functions implies that the two sides are equal for all Re(a) > 0. By
continuity this extends to Re(a) > 0, a # 0. Thus

Fe o2 = gmd42pM2  Reg>0 and a#0, (7

where a'? is defined as the branch with Re(a) > 0. In particular, 1'2 = 1.

We give two simple but striking applications of the Fourier transform on
.
First consider the solvability of the equation

(1-Au=f (8)
For u, f in & this is equivalent to
(1 +1§1 =/, (%)
hence
d=(1+§)'Ff (10)

Proposition 6. For any fe &' (R?) there is exactly one solutionu € &' (R*) to (8).
The solution is given by formula(10). In particular,if f € &, thenue L If f € L?,
then for all ja] < 2, D*u € L%(RY).

The conclusion means that the distribution derivatives D*u of the tempered
distribution u are equal to L? functions.
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ProOF. Only the last assertion must be proved. Compute

F (D) m—cl-;ffe L3 (RY).

By Plancherel's Theorem, this proves that D'u € L>. a

We have seen that the equation (& + &,)u € L? does not imply that all first
derivatives of u are in L. The regularity in the above proposition is typical
of elliptic equations. Note that the equation asserts that onc linear combina-
tion of {D%u: || < 2} lies in L? and the proposition shows that all of the Du
with |2| < 2 are in L2. In this sense the result is surprising. It is false (and not
obviously so) that if f € Co(R?), then u € C*(R?) (Problem 5.9.3). The gain of
two derivatives is correct if one measures diflerentiability using L? derivatives

from the Theory of Distributions and is false for the classical partial deriva-
tives of second-year calculus.

The second application is (o a Liouville-type theorem.

Theorem 7 (Generalized Liouville Theorem). Suppose that P(D) is a constant

coefficient partial differential operator such that P(§) # O for & # 0.1f u € &'(R?)
satisfies Pu = O, then u is a polynomial in x.

ExampLes. 1. P = P, is a homogeneous elliptic operator. In particular, if P
is the Cauchy-Riemann operator ¢, + ic, or the Laplace operator A.

2. P = ¢, — A, the heat operator.
3. The wave operators & — &, and ¢} — A do not satisfy the hypothesis.

4. In Problem 1.3.3 many such polynomial solutions were constructed for

the heat equation. The real and imaginary parts of (x + iy)" are polynomials
on R? which satisfy Laplace’s equation.

Proor. Take the Fourier transform of the equation to obtain
F(P(D))u =P =0.

Since P(S) # 0if ¢ # 0 it follows that supp 4 < {0}.
Thus #u must be a finite linear combination of derivatives of the delta
function

4=) c,D%.
Apply the inverse Fourier transform to obtain
u=y ¢, F*D6 =Y c(—xFF* =Y c,(—x)(2n) 4%,
a polynomial in x. 0O

Corollary 8.°The only bounded harmonic (resp. holomorphic) functions on R*
(resp. C).are the constants.
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Another classical example which is easily understood is the operator
(d;/dx)". Contrast this with the constant coefficient nonhomogeneous operator
d?/dx* + | which has sin x as a nonpolynomial bounded solution.

PROBLEMS
1. Prove Proposition 1 and its corollary.

2. Compute the Fourier transform of the following tempered distributions.
(a) 1/(x — c), c € C\R. Hint. Use Problem 2.3.3.
(b) The Heaviside function h = x;9. (- Hint. Consider the derivative of h. Find all
distnibution solutions of xT = 1 (there are infinitely many).
(c) ¢*6 € '(RY).
(d) x* € ¥'(RY).

There are situations where the Fourier transform has been defined in more than one
way as an element of & . For example, if u € L” for all p € (1, 2], then Fu is defined
by a different extension process for each such p, and in addition Fu is defined in yet
another process as an ¢lement of &’. Toshow that all the extensions agree, the simplest
algorithm is to show that they all define the same element of &".

3. Prove.

Proposition. Suppose that X and Y are topological spaces with ¥ <« X c¢ &',
¥ < Y c & ,whereeachinclusion is continuous and sequentially dense. If K. & —» &
is continuous and has sequentially continuous extensions K, X - Yand K,: & = &,
then the restriction of K, to X is equal to K.

ExawmpLes. 1. (Fourier Transform of L?). Here K, = #, X = L?, with pe{1,2], and
Y = L*and K, is the Fourier transform as defined in §2.3. The proposition shows that
the two definitions of the Fourier transform of an element of L’ define the same
tempered distribution.

2. (Fourier Transform of Measures). Let .#(RY) denote the set of finite Borel
measures on RY. .# is a Banach space with norm given by the total variation. For
u € .#. there is an elementary definition of a Fourier transform

(K, u)¢) = (2r)~? J e™"* dp(x). (11)

ThenK;: X = Y = L*(R*) n C(RY) has norm 2r~*? (exercise). However, ¥ (R‘) is not
dense in .#. On the other hand, & is sequentially dense in .# if .#(R?) = C(R*) is
given the weak-star topology. The proposition applies with K, = F showing that the
two definitions of the Fourier transform of a measure yield the same tempered distribu-
tion. That is, the Distribution Theory Fourier Transform of u is equal to a continuous
function of ¢ given by the absolutely convergent integral (11).

Itisalsotruethat #is notdensein L™ = (L') butis dense in the weak-star topology.
Here, as for measures, it is often useful to use this weaker topotogy.

4. (@)ForRea 2 0,a # 0,and b € C compute the Fourier transform of ¢ ~(=** 2612,
(b) Discuss the limit as a converges to zero.
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§2.5. Convolution in #(R?¢) and &'(R?)

In this section the extension process is applied to the operator convolution
by ¢ € Z(R). For y € ¥(R*)

(pey)(x) = I o(x — Y)Y (y) dy. (H

The integral is absolutely convergent and Lebesque’s Dominated Conver-
gence Theorem shows that ¢ »  is continuous and vanishes at infinity, that
is, belongs to C(R?). Differentiating under the integral sign (Problem 1) shows
that ¢ ¢y € C*(R?) and

D@« y) =(D*p)s ¢y = @ D'Y. (2)
If 1/p + 1/g = 1, Holder's inequality implies
los¥ll: < HollelViie,. 3

To estimate the L! norm of ¢ »  one integrates to find

lo*yly s J ( J l@(x — ¥ ()l dy)) dx = J (jltp(x = WO dx) dy.

The last equality using Fubini’s Theorem. The integral on the right is exactly
equal to the product of the L' norms of ¢ and ¢ proving that

Nosylip < llohe gl @)

Estimates (3) and (4) form the heart of the L” extensions for ¢ # discussed in
Problems 2-4.

For the & &' theory we need to show that ¢ » is continuous from .¥ to
itself. An elegant proof uses the Fourier transform of ¢ » . Since @ » ¢ is In
L! its transform is computed as the absolutely convergent integral

Floey)=(2n) J e““( I o(x = y)¥(y) dy) dx.

Fubini's Theorem justifies reversing the order

= J'fp(y) ((lu)“’z Ie"“w(x - ) dy) dx.

The inner integral is & (t,¢) = e””@(¢), so

Flory) = j'cb(é)e""!ﬁ()') dy = (2r)"@y. ()

Thus )
ey = F*(2r)"¢Y) (6)
Since ¥ and F* are continuous maps of & to itself and multiplication is a
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continuous map from & x & to & (see Example 2 at theend of §2.1), it follows
that ¢, ¥ — @ » ¢ is a continuous bilinear map from ¥ x L t0 &
Formula (6) also gives a short proof of the & convergence of mollification.

Propesition 1. If ¢ € & with { ¢ = | and ¢, = £™p(x/¢), then for allue &

L-lim g, su=u.

e—0

PROOF.
F (@, u) = Q)2 F 9,(E)F u(é) = (2r)**(F o)) F u(§).

Since F(0) = (2r)"*2 [ dx = (2r)™**, Proposition 2.1.0 shows that
&-lim F (@, = u) = Ga(s). O

The map ¢ s is a continuous linear map with transpose computed from

(oo T 4> =(T, o= ¢).

For T € & this is an integral

H T(x)p(x — y)¥(y) dy dx = f (f @(x — Y T(x) dx) w(y) dy,

and the inner integral is the convolution of T with the reflection, R¢, defined
by R¢(x) = ¢(—x). Thus(p )|, = (Rep)e.

Proposition 2. For ¢ € &, the operator ¢ s exiends uniquely to a sequentially
continuous operator of &' to itself. This operator satisfies

Cos T, u) =T, (AP)»u),
Flp+T) = (2n)?pT,
D¥(peT)=(D*@)e T = @+ D*T

ProoF. All the identities continue from the sequentially dense subset of all
Te Y(RY). O

For any distribution Te @' the convolution T s ¢ € C*(R’) is defined for
all g € 2(R*) by (T, 1,0)>. Thus T s maps 2 to C. For Te &, we extend the
map T s toa map of ¥ to &'

Proposition 3. For Te &'(R?), the map 2(R?) 3 ¢+ T = ¢ extends uniquely to
a sequentially continuous map of S(R?) to &'(R?) which satisfies

(T, ¥) =<(T, ¢s¢). )
PROOF. For ¢ and ¢ in 2, the identity (7) is known. As we have observed, the

map ¢, Yy —@s+¢ is a continuous bilincar map of & x & to &. Ts can
therefore be extended using formula (7). O
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EXAMPLES
1. §» =14,
2. (D*6)s = D*.
3. (P(D)d)* = P(D).

4. The unique tempered solution of (1 - Aju=fe & is given by
Fu =(1 +(§|?)"' F/. Definc a tempered distribution K by

F(K) = (2r)7%(1 + 1g1*). (8)

Then, for fe &, the solution u is given by

u=Kef =J K(x — y)f(y)dy. 9

K is the unique &'(RY) solution of
(1 - A =. (10)

Formulas (8)-(10) are typical of Green's functions. The identity (10) says that
K is a fundamental solution. Equation (9) expresses the solution of the problem
“find a tempered solution of (1 — A)u = £~ as an integral involving the data
f- The kernel of the integral expression is called the Green's function. For
d =1, K is computed in Problem 2.3.4 (see also Problem A.3(vii)). The
computation for 4 = 3 is outlined in Problem 5.

We next use convolution to prove that the Fourier transform of a distribu-
tion with compact support is a smooth function.

Theorem 4. If u € &8°(R’) then the Fourier transform of u is the restriction to R
of the entire holomorphic function
C!3 {20742 (u, e L5, (11)
Proof. Choose j e CF(R?), j(x) =j(—x), [jdx =1, and let j, = e~%j(x/e),
u, =j,sue C5(R’). Then u, — u in ¥(R*), so &,— & in &". Therefore
i~ in '(RY). (12)
Now, &, is entire analytic with
#(0) = Cu,, (2m) ™27 T050)
= <1¢ .y, (ZR)-dlze-in,(‘>
= (U, j, » (2n)"92e™iL25),

As £ — 0, j.» (21)~“?e ™" converges to (2n)"“2e~* in C*(R?), uniformly for
{ in compact subsets of C*. Thus, uniformly in compacts in C*, d.({)—
{u, (2x)"“%e~%_ In particular, the limit is entire analytic, and restricting to
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R,
2" (R4 — lim Fu, = (u, (2r)"4%e™™*%). (13)

Equating the limits in (12) and (13) yields
d(¢) = {u (2m)™ 275,

and the right-hand side is the restriction to R of the entire function (11). O

This result is typical of Paley-Weiner Theorems which establish connec-
tions between the support properties of distributions and analyticity prop-
erties of their Fourier transforms. As a second example, we mention that
tempered distributions with support in x;, > 0 have Fourier transforms which
are analytic in Im(,) < 0. The construction in §3.9 relies on this idea.

PROBLEMS

1. Justify the differentiations leading to (2).

L” Theory of Coavolutions

The basic estimates (3), (4) show that s extends uniquely from & x & to a continuous
bilinear map L'(R*) x L'(R*) = L' (R} and L?(R?} x LYRY) = L*(R?). As in the proof
of the Riemann-Lebesgue Lemma. the image of the first map is in C(RY).

2. Prove that for pe [, x] the map s defined on ¥ x & extends uniquely 10 a
continuous bilinear map from L'(R‘) x L?(R’) — L?(R‘). Hint: Interpolation, or
use Holder's inequality.

3. For L'p+ 1/g =1 and re (1. 4]. find se (1. x] so that » extends uniquely to a
continuous bilinear map L'(R‘) x L?(R) — L'(R‘). Express the continuity in the
form of an inequality. Hint: Interpolation in the first slot. This result is called the
Hausdorf- Young Inequality.

4. Forje L'(R*) with {j(x)dx = 1, let j,(x) = £ %(x/c). Prove that for any p € [1. X[
and v e L”(R®), j,»u converges 10 u in L? as ¢ = 0. For p = x, show that the
convergence is valid in the weak-star topology for L* = (L')’, but not in the norm
topology.

Computation of the Green Kernel for (a> — 4) ™', d =3

For a > 0. the Green's function, K. for a* — A is the inverse Fourier transform of
(2r)¢ *f(a® + |¢[°). Then K € ¥ (RY) and (a° — A)K = J. The next problem leads you
through a computation of K for d = 3. The case d = | is contained in Problem 2.3.4.
See also Problem A.4(vii).

5. (i) Show that K € L*(R°®) and is rotation invariant. that is. K, = K for any

orthogonal transformation A (seec Problem 2.2.3).

(ii) Conclude that K(x) = g(|x|) for a g€ L}(R., r* dr). Warning: K is in L*(R%)
so evaluating at points is risky, be careful.

(ili) Show thatin 2'(R.).(a® — r~2¢,r2é)g = 0. Hint: Consider (K. @® - AW) =
0 for suitable radial test functions on K.

(iv) Conclude that g = (Be™* + Ce**)/r with B, Ce R.

(v) Show that C must vanish. Thus supp(K — Be™*/r) < {0}, so K — Be™*/r =

.Y ¢,8% a finite sum.
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(vi) Show that ¢, = 0 for all x.

(vii) Determine B using FK = (2r)%¥*/(a? + |{]?). Hint: & = 0.

DiscussioN. For even d, K involves higher transcendental functions (see Courant
and Hilbert [CH, Vol. IT]). Having kernels often allows one to find supplementary
estimates as in the next problem.

6. (i) For whichpe[l, oc])is K in L?(R?).
(ii) Use Problem 3 to find an interval I < {1, ac] such that if fe L?(R®), then
(a2 — A)~Yfe L*R>) for all s € I. Is your I as large as possible?
Discussion. Such results can be proved directly from the Fourier transform formula,
but not nearly so simply. It is also true that if fe L’ then for all |a| < 2,
D*(a® — A)™'f€ L. The case p = 2 is Proposition 2.4.5. For p # 2, this is a special
case of the Calderon-Z ygmund inequality and lies considerably deeper.

§2.6. L? Derivatives and Sobolev Spaces

The regularity of a function is often clearly expressed by saying that its
distribution derivatives up to some order lie in one of the classical spaces L”.
For example, if I = ]a, b( is an interval in R, then for fe 2°(/):

(1) fe C'()if and only if Df € C(I).
(2) fe Lip{l), ifand only if Df e L=(I). Here

Lip(l) = {fe C(I): sup Vi =Sy < oc}.
ey |x =yl
(3) f is absolutely continuous in I if and only if Dfe L'(]).
(4) f is of bounded variation in I if and only if Df e .#(!), the finite Borel
measures on /.

Caution. Changing f on a set of measure zero does not effect the distribution
defined by f, so the inclusion fe C'(I) must be interpreted as meaning that f
is equal almost everywhere to an element of C'(/). Similar interpretations
apply for fe AC, fe BV,and f¢ Lip.

There arc many ways of defining the notion of a function with derivative
in L?(I). Most are equivalent and useful. One which is not good is that there
exists g € L2 such that

S(x + h) = f(x)
h

To see the inadequacy of this notion, note that the Cantor function satisfies
the above with g = 0. However, the Cantor function is strictly monotone. Its
distribution derivative is not equal to zero but is equal to a measure singular
with respect to Lebesgue measure. The conclusion is clear, pointwise differ-
entiation is not the correct notion.

-+ g pointwise a.e.
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A second exampleisu = (1 — A)"'f for fe L?(R?). Here u has distributional
second derivatives in L2, showing that such things arise for partial differential
equations. Our first result shows that, with the exception of pointwise con-
vergence of difference quotients, most natural ways of defining “df/0x, €
L*(RY)” are equivalent.

Proposition 1. For f € L*(R?) the following are equivalent:

(1) (Schwartz). The distribution derivative ¢f/0x, € L?(RY).

(2) (Fourier). &, f'e LA(RY).

(3) (Newton). As h =0, (f(x, + h, x3,..., X;) — f(x;))/h converges in L*(RY).

(4) (Friedrichs). There exists a sequence f, € S (R?) such that f, - f in L*(R?)
and &f,/@x, converges in L*(R*).

Remark. Each of the conditions provides a natural candidate for ¢f/¢x, . For
(2) it is F*(i¢, f ) and for (3) and (4) it is the L? limit asserted to exist. The
proof below establishes the equivalence and the equality of the four candidates
for ¢f/ox, .

PROOF. (1) <= (2) Since F (D, f) = &, . the equivalence is an immediate con-
sequence of the Plancherel Theorem.
(2) = (3) Introduce the notation

ot = h ' (t-mr.0.....00 — 1)

for the forward difference operator converging to &/¢x,. We must show that
8" f converges in L2(R). By Plancherel's Theorem, it suffices to prove that
g, = F (81 f) converges in L(R?).

Compute ‘

gn = (™ = 1)/hE,1¢, S

The factor in square brackets converges (0 i = de”*/d0]¢.o for all { € RY. Since
|de'*/df| < 1, the Mean Value Theorem implies that the factor in square
brackets has modulus less than or equal to one. Thus g, — i{, { pointwise and
19] < 1, f1. Lebesgue’s Dominated Convergence Theorem yields g, — i, f
in L3(R?).

(3)= (1) For any fe &' (R?), 8! f — &f/éx, in ¥'(R”) (Problem 1). Let g be
the L2 limit of 8" . Then 8! f — g in &’ (R*). Equating the two & limits yields
df/ox, = g € LA(R).

At this stage (1)<>(2) <> (3) is proved.

(4) = (1). Since f, = f in L? we have f, = in &, 50 &f,/0x, — 9f/¢x, in &
since 9/dx, is sequentially continuous on .¥".

Let g be the L}(R?) limit of f,/dx,. Then 8f,/éx, -+ g in &'. Equating the
two &'(R®) limits yields df/dx, = g € L*(R’).

(2) = (4). Write f = h + k,h =fys 1<,- Choosc h, € &, h, - hin L*(R“),and
supp h, < {I£,] < 2}. This can be done by first replacing h by hx,a<a for R
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large, then mollifying by a compactly supported approximate delta function
of sufficiently smail width.

Similarly, choose a sequence I, c & converging in L?(R) to £,k with
supp I, < {I£,1 2 1}. Define f, by &/, = h, + I,/&,. Then I, /¢, converges to k
in L%(R*) since 11/,| < 2 on supp |,.

Thus #f,-h+ kin L? and .F(éj;/axt) =i, Ff, =il h, +il,— i, f in
L*(RY). O

Fors e Z,,the Sobolev space H*(R?) is defined to be the set of allu € &'(RY)
with the property that for all |a| < s, D*u € L*(R¥). The analogue of Proposi-
tion 1 requires difference operators convcrging to 0°. For h # O define the
vector of dxl'ference operators 8* = (87, ..., 87), where 8! = (r_,, — I)/h and
¢ =(0,. ., O)with lin the jth component As with multlomdex notation

for dcrivatwes, lct
@) = [T

Note that the operators 5} commute so the order of factors in the above
product does not matter.

Proposition 2. For ue '(R*)and s € 2, the following are equivalent:

(1) For all x € N* with |a} < s, D*u € L*(RY).

(2) For any a with |a) < s, £%2 € L3 (RY).

(3) ue L? and, for any a with |a| < s, (6*)*u converges in L*(R*) as h = 0.

(4) There exists a sequence u, € &(R®) such that u, — u in L*(R?) and, for all
|a| < s, D*u, converges in L*(R9).

The proof is Problem 2. _
The characterization (2) can be rewritten as w(f)|d|2 e L' where
w() = Y |&*(2, the sum over |a} < 5. The condition also suggests introducing

the norm
2 n
( ,Zs ID‘ulI..:) = (juf(é)llilz d&) .

With this norm, & establishes an isomorphism between H*(RY) and
L*(R{, w(§) d¢). In particular, H* is complete. One defines the same set of
distributions using any other weight w' such that ¢,w < w’ < ¢, w with posi-
tive constants ¢;. A convenicnt and nearly universal choice is w’ = (1 + |£|?)
= (&)* Here (&) = (1 + |&))'? is a smooth strictly positive function which
grows like [£| as { — co. One advantage of this choice of weight function is
that it suggests a generalization of H* to arbitrary real s.

Definition. For s € R, H*(R?) = {u € &#'(R?): <¢)*@ € L*(R?%)}. The norm in H*
is defined by [lullz. = () Al 3 ne
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ExaMmpLES. 1. Since (&)*Fd = (2n)~92(&)* is square integrable if and only if
s < —dJ2, we see that § € H*(R?) if and only if s < —d/2.

2. The spaces H*® consist of distributions which are in a sense square

integrable at infinity. For example, the distribution 1 whose Fourier transform
is (2n)¥25 belongs to no H*.

The Fourier transform # is an isometric isomorphism (= unitary map) of
H* onto L3(R?, (&)?* d¢). In particular, H*® is a separable Hilbert space.

Proposition 3. Forany —x <s<t<x.,¥ c H' « H' ¢ &', each inclusion
being (sequentially) continuous.

PRrOOF. If u, converges to zero in &, then (1 + [x{?(1 — A)™u, converges
uniformly to zero. Thus (1 — A)™u, converges to zero in L. Taking Fourier
transform yields <¢)2%4i, — 0 in L*. Thus u, converges to zero in all the H*
spaces. This proves the continuity of the first inclusion.

For the second note that the H' norm is greater than or equal to the H*
norm.

For the final inclusion, note that forue H’ and 9 € &

I<u. @) = |, @) < I(i)’ﬂ»’)"w&’

< lullg.ltoly-. (1)

the last estimate following from the Schwartz inequality. Thus if u, converges
to zero in H* then ¥ -lim u, = 0. 0O

The converse Schwartz inequality applied in L*(&$) shows that

lull sy = sup {J.wp dx:pe ¥, loly- = l}-
Inequality (1) shows that {u, @) extends uniquely to a bilinear map
H* x H™* - C satisfying (1) for all u € H?, ¢ € H™*. We continue to denote this

pairing by ¢ , ). Inequality (1) is then called the generalized Schwartz in-
equality. Note that foru, ¢ € H* x H™*, ip € L'(R}), and

u, @) = jﬁ(:)¢(§) dg.

The pairing { , ) gives a representation of the dual of H* called Lax’s

Duality Theorem (Problem 3.5.1). Note that u(x)¢(x) is not necessarily locally
integrable.

ExaMpLE. For ¢ € H?*'*¢and y = 85/¢x, € H™*27'"¢ we have

(0, ¥)> = —8,9(0) = —(2n)"4? I $(&)ig, dt.
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Here o(x)¥(x) = ¢d8/0x, is not a locally integrable function even if g € &.
Nevertheless, many authors use the formal expression { ¢y dx for ( , ), just
as one can write formally { T(x)¢(x) dx for {T.¢) when Te ¥ and y € &.

If P(D) is a constant coefficient partial differential operator of order m, then
IP(&)] < c{&>™ and it follows that P(D) maps H* to H*™ continuously. The
operator (1 — A)™ is a unitary map of H® to H'~2". More generally, if
A™ = F*(E™F, then A" is unitary from H® 10 H*™*.

Proposition 4. If ¢ € #(R’) and s € R, then the map u— @u is a bounded linear
map of H*(R?) to itself. Moreover,

Noullpsra < cis. D)NCEIDEN Lriro Null o rey-

Proor. The Fourier transform of ¢u is given by

F(pu) = 2n)*? J @(S ~ mi(n) dn.

Then
(&' F (pu) = Qn)™? I %%—:tb(é = M{n)%iln) dn.
We need the following simple estimate for (- )°
(&>° < 2§ - . (18)

To prove (18) begin by noting that grad<{w) = w{w)™' is of length at
most 1. Thus

s+ 18— nl < () +1E —n).
On the other hand, for any positive c,
M+c)=1+2c+ct<s2(1+cd)

Apply with ¢ = | — g} to find () < 2'*(n){& — n). Estimate (19)fora > 0
follows.

The case of ¢ < 0 then follows from

@ _m-
OGS

Using (19) in (18) yields

< 2""2((' — ,,)tal.

I Flpu)l s ¢ J.I(f ~ PR — Ml (<nd*a(n)l dn.
Then Young's inequality implies

HCEY F (@uMiLzrey < cIKEIMPEM Lira <> S} L2¢Re),
which is the desired estimate. 0O
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It is important to know that every compactly supported distribution lies in
some H°.

Progosition 5. If Te &'(R?), then there is an s € R such that Te H*(R?).

PROOF. There are constants ¢, R and an integer N so that, for all ¢ € C*(R?),

KT. @)l < C( > sup ID"P(X)I)-

IS N xR

Thus using Theorem 2.5.4 yields

- (T, ey 2\ N
=|—m—m—mom—muuan| <L C) .
T o | S c($d
For s so negative that s + N < —d,2, it follows that Te H*(R¢). O

In dealing with function spaces the most usual method is to prove assertions
on a conveniently chosen dense subset and then pass to the limit through
approximations from that subspace. The limit is justified using appropriate
inequalities. For example, in L?(R¢), p # x, a convenient dense set is the
simple functions ) c;xs, with E; bounded measurable. Equally important is
the dense set CT(R¢).

Proposition 6. For any s € R, CF(RY) is dense in H*(R?).

ProOF. For u € H’ and R > 0, define ug by iig = 1< . Then

lu = ugllye = J’ la1*¢$)* d&.
192 R

Since the integrand belongs to L' (R?), the Dominated Convergence Theorem
shows that the integral tends to zero as R tends to infinity. Given ¢ > 0, choose
R so that |lu — ugll, < ¢/3.

Choose j e CP(1El < 1), {ydE =1, and set j, (&) = n(ni). Define r, by
Fr,=j,o Fug. Then supp é, < {|S] <1 + R}. Thus ¢, € C5 has compact
support so v, € H* and

len = uplliys = f(s‘)"ljc‘ﬁa — tigl? d¢. (2
Since theintegral issupportedin || < 1 + R,theintegral in (2)is estimated by

< (1 +(1 + RP*Y ljeoiip — tig)? di.

Kis1+R
Problem 2.5.4 implies that the right-hand side converges to zero, so we may
choose n so that flv, — upll, < ¢/3.
Choose x € CF(R?) with x(0) = 1. Since v, € &, y(x/m)v, = v, in & as m
tends to infinity. This implies convergence to v, in H*. Thus we may choose
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m so that |lx(x/m)v, — v,ll, < &/3. Then x(x/m)t, is within ¢ of u in s-norm and
the proof is complete. 0O

The next result asserts that if we H* with s large, then u has classical
derivatives. Roughly the number of classical derivatives is equal to the number
of Sobolev derivatives minus one-half the dimension. There is a “loss™ of
one-half of a derivative per dimension.

Theorem 7 (Sobolev Embedding Theorem). If ke N and ue H*(RY) with
s> d/2 + k, then for all a € N* with|a| < k, D'u € C(R?). In addition, there is
a constant ¢ = ¢(s, a, d) so that for all u e H*(R®)

“Dau“l.a(n‘) < cllull yo rey- (3)
Prook. If suffices to show that (3) holds for all u e ¥(R*), since given any
u € H*(R®) we may choose u, € &, u, — u in H*. Then, for |a| < k,
ID%u, — D*u,lic = < cllu, — Uyl g,

so D’u, is a Cauchy sequence in C hence convergent in C to a function g,.
Then D°u, — g, in &' (R?).

However, since u, — u in &' we have D*u,— D’u in ¥’. Equating the two
& limits yields D*u = g, € C. Finally, passing to the limit n — o in

“D’u,lll_- <c ““n“"'

yields (3) for u.
To prove (3) for u € & observe that

—ea | & .

D*u(x) = (2m)™*? £y de.

| u(x) = (2n) J(é),(s> u d¢
Now &4/{(&)* € L}(R%) if (and only if) s > d/2 + }al. The Schwartz inequality
yields (3) with ¢ = (21} 2 |1£°CED "l L2 na)- O

PROBLEMS

1. Prove that for any fe &'(R*), 82 f —&fiéx, in ' (RY).
2. Prove Proposition 2.

3. (i) For which values of s is )05 in H*(R)?
(ii) For which values of s is 0. 1yu(0.1) i H*(R?)?
(iii) IfK € &'(R)is the tempered solutionof (1 — A)K = .for whichsis K € H*(R*)?

In the next two problems you will show, by explicit construction, that the Sobolev
Embedding Theorem is sharp.

4. Using functions of the form r*(in r)® ncar x = 0, construct a3 u € H\(R}) N & (R?)
which is not bounded near (0, 0).

DiscussioN. If u were in H'** for any ¢ > 0, then Sobolev's Theorem would imply
that ue C.
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5. Construct a u € H'3(R) such that u ¢ L°([ -1, 1]). Hint. Choose fe L*(R), =0,
(7% ¢ L\R). Define u = & ~'({¢)>~1%f). Formally, u(0) = (2x)™'2{ (&>~17f d¢
= 0. To show that u is not bounded on a neighborhood of 0, show (using (2.2.7))
that as 7 — o, lim [u(x)ne~*""? dx = . Why is this sufficient?
Discussion. It is not hard to generalize this last construction to show that if s < d/2,
then there is an unbounded clement of H'(R?). Similarly, if s < k + d/2, ke N, and
x € N4 with |a| = &, then there is a u € H*(R?) with 'y unbounded.



CHAPTER 3

Solution of Initial Value Problems
by Fourier Synthesis

§3.1. Introduction

This chapter describes a method for solving and/or analyzing partial differen-
tial equations using the Fourier transform. The key ingredient is that constant
coefficient equations have explicit exponential solutions. Both the power series
method and the Fourier analysis method have as point of departure explicit
exact solutions. This is a severe limitation. Some more recent developments,
forexample, pseudodifferential and Fourier integral operator methods depend
on explicit approximate solutions which exist in more general situations.

The goal of this chapter is to find formulas which are sufficiently informa-
tive to at least distinguish between good and bad initial value problems for
constant coefficient linear equations such as &, + 6, and ¢, + id,.

The idea has a predecessor for ordinary differential equations. If P(D,) is a
constant coefficient ordinary differential operator, then

P(D)e™ = P(t)e"™,

so that e’ is a solution if and only if P(z) = 0. If this equation has simple roots
t,,13,..., then thefunctions exp(iz;¢) span the solution set of the homogeneous
equation Pu = 0. The recipe is only slightly more complicated if there are
multiple roots.

For a constant coeflicient linear partial differential operator, P(D), we have

P(D)e"** = P({)e'™,

so there are solutions for any ¢ € C" satisfying P(£) =0, that is, any point in
the complex characteristic variety. For initial value problems, one separates
t and x,

P(D,, D,)e'***% = P(z, §)e!®+*,
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In many problems from applications the solutions tend to zero when |x| - o0
corresponding to the fact that the phenomena described take place near the
observer. If £ is real the exponential solutions are bounded as x tends to
infinity while for { € C\R they explode exponentially. When constructing
solutions which dccay at infinity, one takes a superposition of cxponential
solutions with ¢ € R*,

J. a(';.')eit({)n»a'x{ dé
R=

We will be studying the consequences of this simple idea for a while. It is
surprisingly rich.

PROBLEMS

1. For the Cauchy-Riemann operator, ¢, — i¢,, show that the exponential solutions
are exactly the functions e** forae C and = = x + iy.

2. Are there any operators P(D) which have no exponential solutions?

§3.2. Schrodinger’s Equation

The first example which we discuss in detail is the Schrédinger equation for a
particle of mass equal to i,

u, = iAu, t.xe R x R (1)

Here the units of length and time have been chosen so that Planck’s constant
is equal to 1. The particle is moving in the absence of external forces. This is
the quantum analogue of Galileo’s particle moving in a straight line at
constant speed. The text of Messiah [Me] is a standard introduction to
quantum mechanics including motivation for the above equation.

In the traditional classification of partial differential operators, the Schro-
dinger equation is neither elliptic, parabolic, nor hyperbolic. The equation is
an example where the precise existence and regularity results require Sobolev
spaces. It is used here as 2 model problem to develop generally applicable
techniques. The resulting formulas are somewhat simpler than those for the
other natural candidate, the wave equation, which is presented in §3.7.

The physical interpretation, in quantum mechanics, is that the square of
the modulus, Ju(t, x)|2, is the probability density for finding the particle at time
t and place x. Precisely, for a Lebesgue measurable subset E c R?,

Probability(particle is in E at time () = I lu(t, x)|2 dx. (2)
£

The probability density for the particle’s momentum is given by the Fourier
transform of u(t, )

Probability(momentum is in E at time ¢) =J‘ la(e, &)\ dE. (3)
;
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This is definitely not obvious. For some motivation the reader is referred to
texts of quantum mechanics (e.g. Messiah, [Me]). There is no simple, clear,
and convincing derivations, just as one cannot derive Newton's laws. How-
ever, Examples 1 and 2 of §3.3, Theorems 4.4.4, 4.4.6, and Corollary 4.4.5 show
that (3) is reasonable.

The probability interpretation requires that

J.Iu(t, x)|?dx =1 forall t>0, 4)

for physically relevant solutions. One is immediately led to think that L%(R¢)
will play a distinguished role. Note that if (4) holds, then the Plancherel
Theorem shows that #u also has L? norm equal to 1, so the interpretation
of | # u|? as a probability density is consistent.

To derive (4), note that if a solution u is small enough, as x — o, to justify

differentiation under the integral and neglecting terms at infinity from inte-
grations by parts, we have

é,flul’dx:é,fuiidx=Jui,+u,fidx
=Y J' widlu + (iGfw)d dx =Y i I éudu — dudu dx = 0.
J) J

The integration by parts can be viewed another way. Writing the steps out
shows that solutions of (1) satisfy a conservation law

Gluj® =iy dfudu — (Gu)a). (5)

Integrating this identity over R’ yiclds & [|u|? dx = 0. Alternatively, inte-
grating over [0, T] x R yields [|u(T, x)|2 dx = {|u(0, x)|2 dx. All roads lead
to the conclusion that (4) is satisfied if [|u(0, x)|? dx = 1.

As a final remark on the physical interpretation, we describe Heisenberg's

uncertainty principle. Note that the probability interpretation (2) implies that
the expected position x*" is given by

x* = f x|u|? dx. (6)
n‘

Similarly, (3) implies that the expected momentum, £*, is equal to

" = j y §li(e, &))2 d¢. (M

The dispersions are
0x) = | (x;— x}"lul?dx, 15j<d, 8)
@) = | (&= ¢ricde, 1<j<d 9)
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These quantities are related by the Heisenberg uncertainty relation (6x;)*
(6¢,)* > 4(Problems 1, 2, 3) which, given the present perspective, is a theorem
in Fourier analysis.

In spite of the probabilistic interpretation, the Schrodinger equation is a
deterministic physical theory in the sense that, given the initial state, u(0, -) =
f(*), the solution u is determined for all ¢. The evolution is determined by
solving the initial value problem

u =iy, 0, -)=f (10)

We already know a certain amount about this problem. Since (¢t = 0) is
characteristic, we do not expect the Taylor series for u to converge, even if f
is real analytic (Problem 1.3.4). However, if f is polynomial all goes well
(Problems 1.3.3 and 1.3.5). The physical requirement (4) renders such poly-
nomial solutions uninteresting. We will see in §3.9 that since the initial plane
is charateristic there is not uniqueness for the initial value problem in the
category of all smooth solutions. There are nonzero u € C *(R, x R$) with

u, = iAu, u=0 for t<O

Though disconcerting at first glance, this is not terrible since the physical
solutions must be square integrable in x. The null solutions above grow
rapidly as | x| = oc.

Holmgren's Theorem shows that if u = O on a neighborhood of 1¢,. ¢, [ x
{x}, then u vanishes on ]t,, t;[ x R! (Problem 4). This result leads to the
quantum mechanical way to catch a lion: If there exists a lion, then putting a
cage anywhere, there is a strictly positive probability that the lion is in the
cage. It also shows that it is not reasonable to look for solutions campactly
supported in x.

The physical interpretation of |, |u|? dx, as the probability of finding the
particle in E, suggests that we want solutions for which this quantity is
continuous in t. We will look for solutions such that t— u(t, ) is continuous

on R with values in L2( R). This also forces related measurements of momenta
to be continuous.

PROBLEMS

In these problems you will prove Heisenberg's uncertainty inequality.

1. For ue (RY) with [|u|? dx = 1, let v = e *"u(x + x**). Show that the average
position and average momentum for v are both equal to zero. Show that the
dispersions (dx,)? and (6¢,) are the same for v as for u.

2. With vas in Problem 1,let Q = | x,5¢;v dx.
(i) Show that |QI? < (6x))%(8¢,)°.
(ii) Perform an integration by partsin thedefinition of @, toshow thatRe @ = —4.
(iii) Conclude that (6x,)%(6¢))* 2 4.
This is Heisenberg's Theorem.
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Theorem 1. If u € ¥ (RY) with [lu}? dx = 1, then(6x,)%(8¢,)* 2 L where the dispersions
are defined in equations (6), (7), (8), and (9).

Discussion. (1) The case of equality occurs when ¢;¢ = cx;v. These are exactly the

Gaussians. (2) Crucial in the derivation is the Heisenberg Commutation Law
[x;, 6;] = 1d.

In the next problem, the Heisenberg inequality is extended to its natural domain.
Define a Hilbert space H; by

H = {ue LAR): [(1 + x})lul* dx + (1 + ENFu)?d§ < oc}.
The square of the norm in H, is the sum of the integrals in brackets.

3. (1) Prove that & 1s dense in H;.
(i) Prove that the uncertainty relation is true for all u € H; with {lul®dx = 1.
Discussion. The space H, is the natural space on which both (x?)*" and ({?)*
are defined. Equivalently, it is the natural space on which the dispersions in the
Heisenberg relation are finite.

4. Suppose that u e C}(R'"?) satisfies u, = vAu with ve £' 0. Prove that if ¢, <1,
and u vanishes on a neighbochood of J¢,. ¢,{ x {x}, then u vanishes identically on
Jt,. t:[ x RY Hint: Use Fritz John's Global Holmgren Theorem.

§3.3. Solutions of Schrodinger’s Equation
with Data in #(R?)

The exponential solutions of the Schrédinger equation satisfy t = —i|$|2. The

exponential solutons are
o~ MRz o Hilz=¢n)

which is a function of x — &t. The exponential solution of frequency £ evolves
by a translation at velocity {. For the equation u, = icAu, the solutions are
e~ and the velocity is ¢£. The hypersurfaces of constant phase translate
atspeed c|£| in the direction §/| £|. Consequently, c¢ is called the phase velocity
at frequency . As we will see, the group velocity, equal to 2¢S for the equation
u, = icAu, is a more important quantity. A hint at why this is so is provided
by the thought experiment of trying to send a message at velocily £ using the
plane waves above.

One would like to say something of the sort, “When this maximum of the
real part reaches you, turn on switch number three”. As the maxima of the
real parts translate at velocity ¢ this sounds like a good strategy. However,
the maxima are indistinguishable. The remedy is to consider a localized
solution which has initial data equal to the product of a plane wave of
frequency & » 1 and a cutoff function of width = 1. The resuiting solution
does not travel with speed ¢ but with speed = 2¢£, as we will see in Example 2
below. -

Returning to the case ¢ = 1, and taking linear combinations of exponential
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solutions, yields the solutions

J‘a(é)e-mahis{ dc—

To solve the initial value problem
u =idu, w0, -)=/() (D

set 1 = 0 and equate the resulting expression to f. This suggests a = (2n) 427,
leading to the formula

u(t, x) = (2z)~4? J- e el F f(&) dE. (2)

An alternate derivation of the same formula starts by taking the Fourier
transform of u, = iAu with respect to x to obtain i,u = —i|¢)%. This is an
ordinary differential equation in time with & as parameter. Solving yields

A, &) = e "R1f(¢).

Equivalently
u(t) = F-Ye "I FYf), (3)

which is the same as (2).

Next we show that formula (2), (3) yields solutions of (1). Rather than justify
the steps in the derivations we give a direct verification. For f € &, the integral
(2) can be differentiated arbitrarily often with respect to ¢ and x. The differ-
entiation is justified by the rapid decrease of #f since the ¢, x derivatives of
the integrand are expressed as afinitelinear combination of terms of the form

polynomial(t, §)e~“KVe'*F f(¢).

Thanks to the rapid decay of #/, these are dominated by cy r¢¢)~ on
[- T, T] x R} x R. We find that ue C=(R x R) and satisfies the initial
value problem (1). In addition, the Fourier transform of D; cuft, -) has Founer
transform equal to a finite linear combination of terms of the form

polynomial(t, &)e R F £(£).

For ¢ fixed, these lic in £ (R?). Thus t+ D2, u(t, -) is a map from R to &(R?).
To show that this is continuous, it is sufficient to show that §*E F D (ult +

h) — u(t)) converges to zero in L>(R{) as h tends to zero. This difference is a
finite sum of terms of the form

(Pt + h, §)e™*MRE — p(r, &)e R\ ox £ 1,

where p is a polynomial. The Mean Value Theorem bounds the difference in

parentheses by a multiple of A(¢£) + <¢))". The rapid decay of 0} f more
than compensates for the polynomial growth.

We want to show that u is a differentiable function of time with values in
S(R). There are two reasonable definitions of this notion and they are
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equivalent. That is, the content of the next proposition whose proof is left to
Problem 1.

Proposition 1. Suppose that u € C(R: S (R?)). Then the following are equivalent:

(1) L-lim,.o(u(t + h) — u(t))/h exists uniformly on bounded subsets of R,.
(2) The partial derivative du/fot exists at all t, x, (Cu/dt)(t, -) e & for all t, and
the map t+ (u/dt)(t, -) is a continuous map of R to & (R?).

Taking the Fourier transform of

&I u(t + h) — ult) —u,
A—-0 h

shows that ue C'(R: ¥)=>Fue CY(R: ¥). In that case, éFu = F,u.

Definition. For k > 1, CY{R : £(R!)) is defined inductively as the set of func-
tionsu e C*"Y(R: ¥)suchthatéf 'ue C'(R: &), C=*(R: ¥) = [, CHR: &)

Itis not hard to show that C¥(R : &) is exactly the setof u € C(R x R)such
that for 0 <j < k, t—c/u(t) e C(R: %) In particular, the solution u con-
structed above belongs to C®(R : &).

C>(R: &) is a complete metric space, the metric derived from the sequence
of norms

p,,(ll) = Z “ X:(",’e:u “ Ll‘l -a.n) > “"o
lal+j+ |l <n

Finally, notethat ue C*(R: ) Fue C*(R: ¥).

Theorem 2. For any [ € & (R?), there is a unique u € C=(R : & (R?)) satisfying
(1). The solution u is giten by formula (2).

ProOF. The existence is proved in the previous paragraphs. It remains to prove
uniqueness. If u € C'(R: #(RY)) satisfies «, = iAu, then taking the Fourier
transform of both sides yields ¢4 = —i| 3|34, whence &(e**"'%) = 0. It follows
that &2 = e""R'F (&), O

Note that | Fu(t, §)|2 = |Ff(£)|? is independent of . Thus the probability
density for momentum is independent of ¢, a very strong form of conservation
of momentum. The conservation of total momentum states that f &|Fu|? d¢
is independent of ¢. This is a weaker assertion.

ExaMPLE 1. Find the solution of the initial value problem (1) when f(x) =
e~ g > 0, a Gaussian with “width” 1/,/a and height 1.

The formula F (&) = a~¥3e~ %13 yields

a(c) = e-um*,-f(‘) = g Y3g= /8% @
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again a Gaussian. As g is even, u = & i = F 4, and (24.7) yields
u= a""z(l,’a + Zit)"’ze"":"'z“ a+2it

. = - ) 2 i 2 22
=(| + 20") dlle olx]3(2(1 + 40 l’i)em’tl:l (1 +4a c.). (5)

This is one of the few explicit solutions of the Schrodinger equation. A good
deal of intuitive content is hidden in the long formula. As t — ¢, the width of
u grows like t./a. The physical interpretation is that (5x) = t./a. Similarly,
the momentum distribution is Gaussian with width ép = ,/a. The momentum
of order \/c_z causes a spread like t\/a explaining the behavior of dx. This
reasoning, based on the physical interpretations (3.2.2)-(3.2.3), should give
you a little faith in these interpretations.

As! — o, the amplitude of u decays like (at) 4 *. The geometric explanation
is that the wave spreads over |x| < t\/—a. If a typical amplitude is M. then the
square of the L? norm is like M z(t\/c_z)‘ which must be independent of ¢, whence

r~ - 2 -
",’1(‘\‘,0)4 ~ J“, aixis 2 dx ~a d 2'

which yields M? ~ (at)™9. These last phenomenological estimates are very
useful in understanding some of the features of solutions of partial differential
equations. They are not intended to be rigorous proofs.

ExaMPLE 2. A closely related cxample illustrates the propagation of oscilla-
tory pulses. Take f(x) = e*"%e~**"2 with 5 € R*. Then F(5) = ¢™""* ? and

ﬁ(t) = e"‘lsile' 1$-nit:2

= o= +23I-mm=ad) - (S-a® 2 (6)

=e (4 = Ylt, s
Then

u=e"r  where &=y(t,E)=e "IN 2
The factor e~*2%" also corresponds to translation
v=1,,w  where i =e "1 *2imT2
Since the wis even, w = F ~'w = # W is given by formula (2.4.7).
w = e-im’“ + Zit)-d.-ze-ﬁ-'lz(l - 2in.

Then

u= ea’mx-m(l + 2‘-,)-4/2e-u-2-m=.rqzn¢zim_ (7)

Let g(t, x) be the solution with n = 0, so that g is an expanding Gaussian of
Example 1. Then u = "™*"™g(x — 2nt) is the product of the plane wave
solution with phase velocity 7 and an expanding pulse translating with the
group velocity 2nt. For n » 1, this justifies the description at the beginning of
the section. Note that the phase velocity is slower than the group velocity so
the pulse appears to overtake the plane wave. Note also that the speed of
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propagation depends on the frequency of the pulse. This gives another insight
into the spreading of Gaussian pulses from Example 1. The “parts” of different
frequencies move at different speeds which pulls the wave apart. Analogous
phenomena explain the spliting, by a prism, of a beam of white hight into
colors. The pulling apart of localized waves and scparation according to
frequency are signatures of the phenomenon called dispersion.

The momentum interpretation (3.2.3) suggests that the momentum = n,
since the Fourier transform is localized near n. If momentum is to equal the
product of mass and velocity then the mass must equal }, since the velocity is
equal to 25. This again supports the physical interpretations of the intro-
ductory paragraphs. The equations for a mass m particle is u, = (i/2m)Au.
The relations in the last two paragraphs will be analyzed in more detail in
§4.4.

The operator f s u(t, -) is called the propagator. and is denoted S(¢) where
S stands for solution. It is defined for all 1 € R. For each t, S(t) is a continuous
linear map of & to itself given by the formula S(r) = F~'e™ ™ F . Itis a
simple multiplication operator in the Fouricr transformed unknowns. Phy-
sicists calt the transformed unknowns the momentum representation.

From the definition of S. it follows that S(0)¢f = ¢}S()f). Using our
Gaussians. it is then easy to compute. by induction on |x|, formulas for
St x*e =" (Problem 3).

PROBLEMS
). Prove Proposition 1.

2. Prove that the map f — u from initial value to solution of the Schrodinger equation
is a continuous map of ¥ (RY) to C*(R:.7'(R*)). Hins. 1f suffices to show that for
every n. there is a ¢ and N so that

pn(u) <S¢ Z Hl -\"(..:_f“u‘nq.

2.+ iy

Discussion. This second result asserts that the solution depends continuously on
the initial date. For C * regularity, one is forced out of the simple category of normed
linear spaces into the category of countably normed spaces.

3. Following the hint in the last sentence of this section, compute S(1) (x*e¢ """ ) for
2l = 1.

§3.4. Generalized Solutions of Schrédinger’s Equation

In this section we construct solutions of the initial value problem
u = iAu, w0, -)=f(-)e H(R'). (1)

by approximating f by data in .#. To justify the passage to the limit requires
H* estimates for solutions. The special case of f € LY(R?) = H%(R?) is espe-
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cially important from a physical point of veiw thanks to (3.2.4), while the case
S =3d€ H ¥ *is called the fundamental solution since it provides a formula
in the general case (sce §4.2).

For any t > 0, let S(r): #(R?*) — &(R) be the map which sends f to u(e).
Then F(S(1)f) = e" ™' Ff, so for any t,, t,€ R, the identity S(r, +¢,) =
S(t;)S(¢2) holds. This identity captures a part of Huygen's ideas about second-

ary wavelets. To progress t, + t, units of time, one¢ can first go t, units and
then use the result as “source™ for the next step of {; units.

The construction of generalized solutions amounts to extending the oper-
ators S(t), by continuity, to larger spaces than .

Proposition 1. For any se R, t e R, j € #(RY),
RSO SMpys = 1S Uy ()

The case s = Qis the conservation of probability in the physical interpretation.

PROOF. I S(0)f ||y = 1e™ "™ P'(EYF £}, e is independent of ¢ since e =" is of
modulus 1. 0

Corollary 2. Forany s € R.t € R, the operator S(1) extends uniquely to a unitary
map of H(R?) to itself. The extended operator satisfies F (S(1)f) = e~ 7 f
for any f € H®.

ProOF. That § extends uniquely to an isometry is immediate. The identity
Sty + ;) = S(¢,)S(¢,) remains true since the two sides are continuous and
are equal on the dense subset & of H*, Thus S(—1¢) is an inverse to S(t) proving
that S(¢) is unitary.

- That S(t) = F* “"F on H* follows from the fact that both sides are
bounded operators on H* and they are ecqual on the dense subset <. O

If f € H* n H*, then S(t)f is defined as an element of H* if we view f as
an element of H™, and it is a well-defined element of H* viewing f as an
element of H*:. The Fourier transform formula shows that both ways yield
the same answer. This leads to the following definition.

Definition. If f €  JH", then the function u: R — (JH*(R?), defined by Fu(r) =
e "REF . is called the generalized solution of the Schrédinger equation with
initial value f.

If s is not sufficiently large the derivatives, é,u, 3zu/8xf, which occur in the
Schrddinger equation wilt not exist in the classical sense, whence the name

generalized solution. In the next section, several equivalent characterizations
of the generalized solution are given.

ExampLE. Find the generalized solution of the initial value problem (1) with
f =de€ n.|< -JIZH'(R‘)'
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By definition, _
Fu(t) = e RF§ = (2r) 927k,

The right-hand side is even in £, so # (rhs) = F *(rhs), so using formula(2.4.7)
with a = 2it yields for t # 0.

u(t) = (2m)"(2it) 42114 = (4nit) 42N 114, (3)

Note than the H(R‘) regularity of u(t) is independent of t but u(0) = é and
u(t) € C™ for all t # 0. The fact that the initial disturbance is localized at x = 0
and propagates immediately to a solution of amplitude 1 uniform in space
reflects one aspect of the uncertainty principle. Initially, |6x| = 0 so |6p! = cc,
and momenta of all sizes are present. This makes the instantaneous dispersion
reasonable.

We have already mentioned that the initial value problem (1) has many
solutions, a consequence of the fact that the hyperplane t = 0is characteristic.
The extension process described above singles out one of these. As (x| tends
to infinity, the generalized solution tends to 2ero in a weak sense described in

the next result. It is not at all obvious that the solution (3) tends to zero as x
tends to infinity.

Proposition 3. If f € H® for some s, and u is the generalized solution of (1), then
forany ¢ C(R¢)and1 e R,

lim {u(s), ry0) = 0.
-~

Proor. Estimate using the generalized Schwartz inequality

1<u(t), Ta@)| < Hu(@ iyl @ ln-c < Wl ll@ly-..

Thus for ¢, ¢ fixed, {(S(t)(-), 1,@) is a uniformly bounded family of linear
functionals on H°. To show that they tend to zero when applied to an arbitrary
f € H*, it suffices to prove convergence to zero for f in a dense subset of H”.
For f €&, S(t)f = u(t)e &, so {u(t) 1,¢) — 0. Since & is dense the proof is
complete. 0O

The basic estimate (2) shows that for f € H®, u(t) is a bounded function with
values in H*(RY). Thinking of the path ¢+ u(r) as the dynamics of our system
it is important to have regularity in time. It is a general principie in linear
analysis that boundedness estimates like (2) are often sufficient to prove
continuity.

Proposition 4. If f € H(RY), the generalized solution with initial value f is a
continuous function of time with values in H(RY).

PrOOF. Choose f, € &, with f, - f in H*. Let u, be the solution with initial
value f,. Estimate (2) applied to u, — u, shows that Ju,(t) — u.(O)lx =
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|fa —Smitus. Thus, forany T > 0, u, is a Cauchy sequence in the Banach space
C([-T. T): H(R?)). It follows that u, converges in C([ - T, T]: H(R*)to a
himit ¢. The generalized solution is defined by u(t) = H*-lim u_(t), and this limit
is equal to ¢(f). Thusu = r € C([ =T, T): H¥R?)). O

Proposition 4 describes exactly the H* regularity of the generalized solution
u with respect to x. Regularity in time is found by expressing time derivatives
as spatial derivatives using the differential equations.

Proposition 5. Suppose that f € H* and u is the generalized solution of (1). Then,
forany j>0.ue C/R: H* 3(RY)), and for allt e R,

tute ya-2s < WY e (4)

PROOF. For f € & we have
IE U)oz = NEAYU L gpezs < Nl ]ye = 1M gpo- (5)

Choose ¥ €f, —=f in H* and let u, be the solution with initial data f,.
Thenforany T > 0 and .V € N. estimate (5) applied to u, — u,, shows that u,
is a Cauchy sequence in the Banach space (., C/[—T. T]: H*"2(&)).
Thus. u, converges in this space to a limit . Asin Proposition 4. we must have
u=rve (., CA[-T T): H*"2(R’)). Since this holds for all T and N. the
proof is complete. O

Corollary 6. Suppose that u and [ are as above. then:

() ¢/Cue C(R: H*~*(RY)).
) I s -2k > d;2, then ue CHR, x RY) and if \x| < k then as |x|— x.
lim GRu(t, x) = O uniformly on compact subsets of R,.

Remark. If k > 2, we find a classical solution. Naively, one might hope that
the solution will be classical if f € C* or if f € C*> A L*. These conditions are
not sufficient. Neither is the stronger condition. ¢#f € C~ L*for |B} < 2. This
insufliciency is demonstrated in Problem 3. A similar weakness of the spaces
C* for the Poisson equation is patched by working in the Holder spaces C*
with 0 < B < 1. This fix is effective for elliptic and parabolic equations but
does not work for the Schrodinger equation. The H* Sobolev space regularity
results are the only sharp ones in the latter case.

PROBLEMS

For any fe HR?), S(1)f is a continuous function of { € R with values in H*. This
property is called strong continuity of S(t). Together with the property S(t, + ;) =
S(t,)S(r,), this shows that § is a strongly continuous group of unitary operators on
H*. An even stronger notion of continuity is that the map ¢+ S(¢) is continuous from
R to Hom(H’, H*), the bounded operators on H*. If this were true, then as h — 0,
NS(t + h) — SO yomens.usy Would tend to 0.
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1. Prove that S(r)is notin C(R: Hom(H’, H*) by showingthat for anyt, # t.. I S(t,) -
S(82) I nomests.nin = 2.
Discussion. The only groups which are norm continuous are solution operators of
the equations u, = Au with A a bounded operalor. The solution operator is ¢4 in
this case and A is called the generator. Strongly continuous groups may have
unbounded generators (e.g. the Schrodinger equation where iA is unbounded on
H*). Unitary groups are generated by anti-self-adjoint operators. In our case S(t) =
¢"S. The interested reader may consult texts on functional analysis. Semigroup
methods have been particularly useful for parabolic equations. Sce, for example. the
book of D. Henry [Hel.

In the next problem. you are asked to show that the Schrodinger propagator is
continuous on L? if and only if p = 2.

2. For p # 2 and t # 0 show that

oy 0 ll‘p,fl,'

Hint. Consider ¢ = e~ "2 witha > 0 and b € R. Let a tend to zero of infinity
depending on the value of p.

Discussion. There is a general principle. Suppose that S is an operator which
respects the L norm in the sense that

cllole €189 - < Cig:iy-.

If there are functions such that ¢, and Sy, are spread regularly over their support
and the suppiS¢,)is incomparably smaller than supp(e,). then S cannot be bounded
in L? for any p> r. The reason is that if M, (resp. m,) is a typical magnitude for ¢,
(resp. So,). then respect for L’ yields M, volisupp ¢@,) ~ m,, vol {supp S@,). Thus
m, M, — x. so Sis not bounded on L". Similarly. S, e 0y L — x for any
p>r.

If there are functions whose support is compressed. one finds that § is not
bounded on L” for any p < r. In our case r = 2, the L* norm is conserved and
Gaussians of size a~*2 are spread by S(1) over a region of size u' *t which. letting a
tend 1o infinity (resp. D). is incomparably larger (resp. smaller) than the original
spread. The conclusion is that § is unbounded on L forallp » 2.

The test functions of the hint are suggested by the solutions

S(1)0 = (dnin) "¢ et xS
and
SO - 3rie) ¢ et Py =,

which spread from a point to all of R! and contract from all of B¢ to a point. These
are extreme examples of dispersion.

The operator S(t) is the Fourier mutiplier 7 *o-"$% 5 and the multiplier e """ is
smooth and bounded but gives an operator which is unbounded L’ for p # 2. This
discontinuity is not obvious. Viewed from the point of view of the multiplier. the
problem comes from the fact that ¢~ oscillates faster and faster as |} tends to
infinity. '

3. (i)} Use the case p = oc of Problem 2 to show that for any ¢ # 0 there is anfel”
such S(1)f = Fre ™ Ff ¢ L= Hint. ¥ S(1)f € L™ for alisuch £, use the Closed
Graph Theorem to show that S(1) is continuous from L™ to itself. Then use
Problem 1.
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(i) Modify Problem 1 and part (i) to prove that for any ¢ # Othereisan fe L® n L2
such that S(¢)f¢ L™.

(1i)) Show that for any ¢ # O there is an fe C3(R*) with derivatives up to order 2 in
L™~ L? and S(1)f ¢ C*(R?). Him. To the above ingredients add S, D*]=0.

4. Prove Corollary 6.

§3.5. Alternate Characterizations of
the Generalized Solution

The propagator S(f) = F ~'e~""'F € Hom(H"*) is characterized in terms of
the Fourier transform. Such methods are not available for problems with
variable coefficients, for example, the Schrodinger equation with potential
u, = i(A + V(x))u. This section contains several ways of identifying the gen-
eralized solution u by looking at its action on test functions.

Regarding the test functions note that if ¢ € (R, x R?), then it is casy o
venlfy that the map 1 (1, -) is C*(R,: ¥ (R¢)). In particular, for anyse R,
Y € C*(R,: H'R?)).

A related remark is that if u e C(R: H*(R?)) for some s € R. then u defines
a distribution on R, x R! by

uly) = J(u(t). Vi, D dt, Y eZ(R™)

Here y € C*(R: &), so (u(1), ¥(t, -)> € Co(R) hence integrable.
A better estimate of the behavior of this ue 2'(R, x R?) rests on the
gencralized Schwartz inequality which yields

|u(e), ¥t ) < Nulgeergy I, My -vngy-
Integrating yields

lu(y) < ||“"uu:m(n:» ||¢’||L'u=u'°m;n~ forall veCgyU xRY). (1)

Theorem 1. Suppose that s € R, fe H(R*). and u € C(R : H*(R*)) with u(0) = f.
The following are equivalent:

(1) u=Sit)f forallt € R.
(i) @) = e " f forallte R.
(i) For any @ € C3(R"), the function t— (u(t), @) is continuously differenti-
able and (djdt) {u, @) = {u(t), (iA)p(x)).
(iv) For any Y € C3(R'*9), the function t— (u(1), Y(t, -)) is continuously dif-
ferentiable with

d
7 SO Y1) = Cule), (6, + iAW, -)). (2)
(v) For any Y € C3(R x R?), (u, (=& — iA)yY) = 0.
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(vi) Forany y €e CS(R x RY)and 1, <t,

t=7;

I (a0 (=8, — AW dt = ult), $())

1 Ed 1

Remarks. 1. Formal calculations from u, = iAu yield (ii), (iii), (iv), (v), and (vi)
immediately.

2. Part (v) is equivalent to the equation (0, — iA)u = 0 in the sense of distri-
butions. Note that all derivatives have been passed to the test function ¥, and
that the transpose of g, — iA is equal to —¢, — iA.

PRrOOF. (i) < (ii) is the definition of generalized solutions.
(i) = (iii) For ¢ € CP(RY) « #(RY)

Cult), 9> =<4, ¢) = J'e“‘""f(é)m{) dé.

Call the integrand F(¢, §). Then
1&F (2, EN = (E12E | REMLENIAEN.

Since ¢ € &, the first term is square integrable and the second is in L%(R‘)
since f€ H®. Thus & F(t,-) has an L!(R‘) upper bound uniformly for 1 € R. It
follows that differentiation under the integrand is justified and

d o
= <ult), @) = J' —ilgPe S AE)B(E) dE

= (Fu, F(idg)) = (u, idp).
The right-hand side is continuous since u € C(R : H*) and the proof of (i1) is
complete.
(iii) = (iv) With the goal of differentating (u(t), ¥(t, -)> at ¢t =t € R, write

Cu(e), Y(t, -)> = Cule), Y(1, > + Cule), (¢, ) — w(t, ).

(iii) implies that (d/dt) {u(t), Y ()> = Cu(t), iAy(t)). The second term is equal
to

Cu(@), Ylt, *) = P(t. ) + Cut) — u(t), Ylz, -) — ¥(t, ).

Since y € C'(R: H™*(R?)) and u(r) € H*(R?), the first term is C!(R) with
derivative equal to (u(r), 6,¥(t)). The second term is estimated, using the
generalized Schwartz inequality,

|u() — u(®), Y1) — Y(O] < Nule) — u(@ g NP (e) — YT g0

Since u € C(R : H*), the first factor is o(1) as t — t. Since ¥ € C(R : H™*(R?)),
the second factor is O(|t — ). Thus the product is o(Jt — t]) so its derivative
at ¢t = t exists and is equal to zero.

Adding the two contributions yields (iv). Since (0, - Ay e P c
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C(R : H*(RY)), the right-hand side of (iv) is continuous which completes the
proof that (ii1) = (iv).
(iv) = (v) Since ¢ has compact support integrating (iv) from ¢ = —x (0
t = + x yields | Cu(t), (& + iAW (1)) dt = 0, which is the desired identity.
(v)=(iv) Fix ¢ and t, < t,. Choose ¢, € C5 (R,) approximating the char-
acteristic function of [t,, t,] (see Figure 3.5.1). Apply (v) to get

J' : u(t), (— G, — iAN@,¥)) dt = 0.

Performing the differentations yields

0= J' : (u(t), o, ()(—¢, — iAW) dt + J. : u(), —@.)>dt =1, + 1,.

The integrand in /, 1s dominated by

Nl L eger,0 0000 A= € = FBWL “}ip gy om0y < X
and converges pointwise to {u(t). (= ¢, — iAW ). so by Lebesgue's Dominated
Convergence Theorem yields

I, -~ J x u(t), (= ¢, — iA)yY()) dt as n— x.

For I,, note that g(t) = {u(t), ¥ (1)) is continuous since ue C(R: H™’) and
Y € C(R: H™*). The integrand is supported in [t,,t, + 1/nJut;, — 1/n, t,].
The contribution of the first interval is

j:mm —pt)g() dt = —g(t,) + J."' o @.(0(g(t,) - g(t) dt.
The integral on the right is dominated by
(...'.‘.‘.‘1".‘,., lg(t) = gt |)I) _[ o e
The maximum is o(!) and the integral equals 1. Thus

ty+1/a
—j oglt)dt = —g(t,) +0(1) as n—oo.

Treating {t, — 1/n, t,] similarly yields the desired result.
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(v) = (i) Suppose that u satisfies (vi) and let v = S(7)f so v also satisfies (vi).
Using (vi) with ¢, = 0 < T and subtracting the identities for 4 and v yields

"
L (lu = o)(e), (=0, — iAW (1)) dt = {(u — o)(T), Y(T)) )

for all YyeCO(R x RY). More generally, if ¢ e C2(R:£(RY), choose
1 € CP(R9) with x(0) = 1. Then x(ex)y has compact support in x, so applying
(3) to xy € CS(R!*¥) yields

T
J‘ (u ~ v)(), (=0, — iA)(Y()x(ex))) dt = {(u — o)(T), x(ex)p(T)).
o

Ase—~0
(=0, — iA)y(ex)p = (0, + iA)y inC(R: H*)

and
xEx)W(T)—=¢(T) imnH™
Thus, passing to the limit ¢ —» 0, using Lebesgue’s theorem yields (3) for
¥ € C*(R: #(RY)).
For any h € L(R), ¥(t) = F*e* ¥~ T} satisfies Y € C*(R: &) and

(& +iAW =0, Yy(T)=h 4)

Plugging this into (3) yields {((u — v)(T), h) = Oforall h € &¥. Thusu(T) = v(T).
This is true for all T > 0, and a similar argument works for T < 0. Thus
u = v = §(t)f proving (i). O

Remark. The proof that (vi) = (i) is like the proof of Holmgren's Theorem.
The key is an existence theorem for the adjoint problem (4).

Corollary 2. Fér fe H'(RY), 3 ue C(R: H*(R*)) such that u(0) =f, and
(C; = iA)u = Q in the sense of distributions.

Remark. The condition u € C(R : H*(RY)) has in it an L? growth condition as
Ix] - oo which avoids the null solutions. Without such a condition there
would be nonuniqueness.

PROBLEM

The generalized Schwartz inequality plays a central role in the proofs of this section.
In this problem we examine another aspect of that inequality. Any ¥ € H ™ defines a
linear functional (-, ¢): H* — C of norm at most liy |l -.. In fact, every linear func-
tional on H* arises in this way.

1. Prove

Lax’s Duality Theorem. For any continuous linear functional I: H'(R*) — C, there is
a unique ¢ € H™*(R*) so that I(-) = (-, ¢). In addition, §I)| = {1l -..
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Hint. First use the Riesz Representation Theorem to show that there is a unique
he H*sothatl(:) = (-, h)y.. Show thaty = F (&) F (h)does the trick. Alternate
Hint. Use the isomorphism of H* =~ L*(R}: (£)** d§) and duality in that L? space.
Second Alternate Hint. It is easy to show that the range of the map y [ has closed
range in (H*). Show that the range is dense by a duality argument.
Discussion. This theorem yields an algorithm for defining so-called negative norms
when the Fourier transform is not available, for example, H™*(f2) when Q # R¢.
The reader is warned that the Riesz Representation Theorem asserts that
(H*Y =~ H°*. The above result asserts that (H*) =~ H™". Clearly, the mappings from
H’ and H™* into (H°) are different. They come from the bilinear forms ( , )y, and
(. D, respectively.

§3.6. Fourier Synthesis for the Heat Equation

The methods of §3.1 to §3.3 yield existence and uniqueness results for a variety
of initial value problems. The strength of the technique is this generality,
together with the fact that it distinguishes well-posed from ill-posed initial
value problems. To appreciate the distinctions between the various well-posed
problems requires some experience. This section is devoted to studying the
heat equation

u, = vAu, v>0, (1)

for u(t, x), t, x e R x R?. Formal Fourier transformation yields
g, = —v|¢|%a, )
4 = e""™f(E), 3)

where u(0, -) = f(:). Note that for fe & and t > 0 one has ii(t) € & but not
necessarily for ¢ < 0. For example, if f= ¢, then 4 for ¢ <0 yields a
function which is not even in &'(R?). Thus, for fe &, one has a reasonable
recipe for u(t) only for t > 0. With that change, the theory proceeds exactly as
for the Schrodinger equation. In particular, the proof of the following theorem
is just like the proof of Theorem 3.3.2 and so is omitted.

Theorem 1. If fe & (R"), then there exists one and only one u € C*((0, o[ :
L (R%)) such that
u, = vAu, u(0) = /. 4)

Fort > 0, u is given by formula (3).

ExampLE. Find the solution of (4) when f = ¢™***,a > 0.

Use formula (2.4.6) for the transform of f to find
Q= e "REg 4o RIY28 5 g=di2g=(mi+laRIZ
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This is an even function of £, so u = & it = Fii. Formula (2.4.7) yields

_ 1 -d2 o
u=a (2vt +-] e Ixth2(2 v+ e}

= (2avt + l)-aze-ixwzunﬂla). (5)
Note that the width of the heat distribution grows like \/vt. In contrast, the
Schrodinger equation leads to growth of order t\/;. Clearly, for heat prop-
agation, i cannot be interpreted as a probability density for velocity or
momentum, otherwise the spread would be linear in ¢.

The rate of decay as ¢ tends to infinity is t™*2 as it was for the Schrodinger
equation. Since the solution is spread over a much smaller region one finds
that the L? norm tends to zero like ~%2 On the other hand, the integral of u
is equal to Fu(0) = Ff(0) so is independent of time. This is the law of
conservation of energy.

To extend the solution operator to a more general class of data requires
some estimates. To avoid confusion with the Schrodinger propagator we will
denote the operator u(0)—s u(t) by S, (), which we know is continuous from
& toitsellfort > 0. Fourier methods yieid a host of Sobolev space estimates

lu@le = le™™ X FS N < IKEXS s = u(O)ll - (6)

These H’ estimates imply that S, (z) extends to a continuous map of H*(R?)
to itself, and u = S,(t)f for fe H* defines a generalized solution u to the initial
value problem. As for Schrddinger’s equation, u € C([0, o { : H*(RY)), and
more generally,

Theorem 2. If fe H*(RY), then the generalized solution satisfies ¢iue
C([0, oo : H*"%(R*)).

ExaMPLE. Find the solution of (4) when f = 4.

Formula (3) yields 2 = ¢~ "% (27)"*? which is again the transform of a
Gaussian. Computing the inverse Fourier transform yields

u = (4nve) 92 IMiev 7

Note that an initially localized solution spreads over all of R%. The principle
of Problem 3.4.2 shows that if S;; were defined for all ¢t and conserved the L?2
norm, then the propagator S, would not be bounded in any L* for p # 2. The
same argument would show that if the L” norm were conserved for some r,
then S; would be unbounded in L? for all p # r. For S, no L" norm is
conserved, but positivity is preserved as is the L' norm of positive solutions.
Nevertheless, S, is bounded on all L?. The failure of “reversability™ explains
the failure of the argument.

The solution with § as initial data can be obtained from the solution, ,,
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with data (2ra)~4? exp(—ajx|?)from the first example upon letting a decrease
to zero, noting that the initial data converges to é in H* for s < —d/2 and,
therefore, S, (t)u, — S,(t)d in the same H* spaces.

As in the last section, the generalized solution has a vanety of equivalent
characterizations.

Theorem 3. If fe H*(RY), ue C([0, x [ : H*(R*)). and u(0) = [, then the follow-
ing are equivalent:

(1) u is the generalized solution with initial data f.
(i) F(u(e)) = e ™' Ff,t>0.
(i) For any ¢ € CJ(R?), (ult, x), @(x)> € C*([0. x[) and

‘%(u' @) = (u, vAp). forall t20.

(iv) For any ¥ € CF(R, x &%), Cu(t. -), yt, -)) belongs to C*([0. () and
d
d—t(u(l. DYt o)) = Cule), Y, (1) + vAY(1)).

(V) (¢, — vAlu=0in 7'(]0. <[ x R
(vi) Forany y e C5(R, x R'}and 0 <1, < ¢,

J u(t). (=, — vAY) (1)) dt = (u, §) z-

There are many estimates which are valid for the heat propagator which
are false for the Schrodinger propagator. We derive some of these by what is
called the energy method, though the inequalities obtained in this case are more
closely associated with entropy increase than with energy balance.

The inequalities are proved by multiplying the equation by suitable, cleverly
chosen. functions and then integrating by parts. For Schrodinger's equations,
multiplication by i leads to conservation of the L* norm. Here multiplication
by uleads to the estimate Jju(t)|,. < |u(0))),:. For Schrodinger’s equation one
cannot avoid complex numbers. In contrast, u solves the heat equation if and
only if the real and imaginary parts of u satisfy the heat equation. Real initial
data f yield real solutions (exercise). Physical temperatures are real. The next
computations are a little easier for real solutions and we omit the modifica-
tions needed in the complex case.

As a first example, note that if fe Re & and u is the solution of Theorem
1, then multiplying the heat equation by u and integrating over R* yields

2
C, Ju (;' X) dx=v IuAu dx = —vJIV,u(t. x)|?dx <0,

the last equality following upon integration by parts. In particular, the L?
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norm of u(¢) is a nonincreasing function of ¢ on [0, oc[. This gives an in-
dependent proof of the H*estimate for s = 0. The s = 1 estimate can be derived
by the energy method, upon multiplying the equation by Au to find

J' Au(u, — vAu) = J' Z Cu fﬁ' —~ v(Au)? dx.

Thus
C, le,u(l. x)2dx = —2v J'I'Au(t, x))? dx <0,

so {|Vuf? dx and {u? dx are nonincreasing. Adding proves that the H' norm
is nonincreasing. For any se N, multiplying by A/u. j =0, 1, 2, ..., s and
adding the results yields the H* estimate.

We obtain new estimates by multiplying by ¢ '(u) where ¢ € C*(R) is a
convex function satisfying

¥(0) =y’(0) = 0. (8)

Then ¢ '(u) 1s rapidly decreasing as x - . and
Il/’(ﬂdt = Jlf' (ubu, dx = +v Jvll (1) Y &;6u dx,

using the differential equation for the last equality. The crucial step is to

integrate by parts to find
Jd: (u)?( ) dx < 0.

Theorem 4. If u € C*([0, xc[ : Re &' (R?)) is a solution of the heat equation (1),

then for any convex Y € C*(R) satisfying (8), § Y(u(t, x)) dx is a nonincreasing
SJunction of t.

so { y(u) dx is nonincreasing.

ExampLES. 1. If Y(s) = s%/2, this yields the energy method proof of the de-
crease of the L* norm.

2. Taking §(s) = Isl’for 2 < p < oc wefind that Ju(t)],, is nonincreasing.
3. Passing to the limit p — o and noting that u(t) € . yields

"“(t)"t,' = lim "“(‘)"Lp < lim "“(0)"1_7 = IMONI,_-.

P x P
so the sup norm, |lu(t)li, .. is also nonincreasing.
4. For pe[1.2[, llull., is also nonincreasing. The technical difficulty here

is that |s|® is not twice differentiable so the integration by parts above is
not trivial to justify. We regularize |s|® and pass to the limit. Let ¢ (s) =
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(¢ + Is|2)?? — ¢22 then

f Y (u(t, x)) dx < fw,(u(o. x)) dx.

Passing to the limit ¢ — Q using Lebesgue's Dominated Convergence Theorem
yields the desired result.

5. If u2 0 and §(s) = s In(s) — s, then again ¢ ¢ C2[0, x[, but a simple
regularization as above shows that f ¥(u) dx is nonincreasing. The integral
~ [ ¥(u) dx is the entropy at time 1.

6. If Y (s) = s, the method reduces to simply integrating the equation over
R} and yields {u dx = constant, the conservation of energy.

The above multiplier or “energy” methods are very flexible, working for
variable coeflicient and nonlinear problems. The present case suggests multi-
pliers to try in the more complicated cases.

PROBLEMS

1. Using the L” estimates proved by the energy method. show that the heat propagator,
Sult) with t > 0, extends uniquely to a continuous linear operator on Re L’ for
I < p < x. Show that for f'€ Re L?, 1+ S,(t)u is continuous on [0, ac{ with values
in Re L?
Discussion. Thus S,(1) is a strongly continuous semigroupon L’. For p = =, this
1s no longer true. Using the L™ estimate and the fact that the closure of & in L= is
C. one finds that S(r) is a strongly continuous operator on C. The next problem
discusses L*.

2. (i) Show that for ¢ > 0, there is a unique extension of $(r) to a continuous linear
operator from L* to itself. Hint. Duality (L* is the dual of L'). Prove and use
an identity (Su. > = (u. $f) and the fact that & is sequentially dense in L=
with the weak-star topology.

(11) For u(0) = y(0.,) € L™(R") show u(r) is not continuous with values in L™ at
t = 0. Hint. Show that for t > 0, u(r) € C(R). Conclude that S(f) is not a strongly
continuous semigroup on L*.

(i) Show that S(1) is weakly continuous in the sense that for every feL= Suf is
continuous on [0, oo with valuesin L* endowed with the weak-star topology.

Discussion. Such strong continuity in C, together with weak-star continuity in L>,

is Quite common as p = o« replacements for L? continuity.

3. Find and prove a complex analogue of Theorem 4.

4. Consider the initial value problem for Burgers’ equation, u, + 2uu, =0, u(0, ') =
J(-), which was analyzed using the method of characteristics in §1.9. Here we use
the energy method and the “quasi-lincar trick” to prove uniqueness. Precisely prove
thatif u are v are real C!({0, T] x R)solutions which vanish for }x| > R,thenu = v.
Hint. Subtract the equations for u and v to prove an equation of the form (u — v), +
a(t, x)(u — v), + b(t, x)(u — v) = 0 with a, D, ,a.b in L= Multiply by (s — v), inte-
grate by parts, and apply Gronwall's inequality to conclude that f(u — o) dx
vanishesforall0 <t < T
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§3.7. Fourier Synthesis for the Wave Equation

This section follows the same path as for the Schrédinger and heat equations,
namely:
(i) solve in C*(R: L(R‘));
(i) derive estimates; and
(iii) extend to generalized solutions.

The initial value problem is
u, ~ctAu=0, ¢>0, (1

u©,')=f  u(0 -)=4g (2)

Note that this is a noncharacteristic initial value problem and that a good
deal of information has already been found in §1.8 concerning finite speed of
propagation and domains of influence and determinacy. In addition, the case
d = 1 was solved explicitly.

The wave equation arises in many different areas of science. Each compo-
nent of the electric and magnetic fields in free space is a solution with ¢ equal
to the speed of light. Small amplitude waves in a gas (acoustic waves) and
small amplitude vibrations of an elastic medium (c.g. a membrane or jello) are
also modeled by the wave equation. In the latter application § pu? dx repre-
sents the kinetic encrgy and { x|Vu|? dx represents thc potential energy where
p is the density and « is a physical constant. Then ¢ = «/p (see [Wh]). The
principle of conservation of energy is that

Iu,’ + ¢?|Vu|? dx is independent of ¢.
The corresponding conservation law for the electric field
J‘lE,I’ + c?|V, E}* dx

does not have a straightforward physical interpretation. The energy in that
case is f{E|* dx.
Fourier transformation in x yields

4, = “Czlﬂzao (3)

. ..sin{c|&|t
016, & = /@) costeldln) + 9 @
Note that cos(c|€|t) and sin(c|€1t)/cié| are smooth bounded functions of &, as
are all their ¢ derivatives. Their time derivatives grow polynomially in § at
most. Note the possible singularity at { = 0 does not occur since

sin(ct|£1) Z (— 1yNcén*"
BT @n+ 1)

This yields
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Theorem 1. If f, g€ S (R®), then there is a unique u € C*(R : & (R*)) solving
the initial value problem (1), (2). The solution is given by formula (4).

Theorem 1.8.3 is a stronger uniqueness result. The evolution operator or
propagator, Sy (1), sends Cauchy data at time 0 to Cauchy data at time ¢, that is,

Swlt)(f, 9) = (u(t). u,(¢)),

sO Sw(t): & x & =% x & The first component of Sy (¢) (f, ) is the solution
of the Cauchy problem.

The verification of the conservation of energy for these solutions is not
difficult. For f, g € Re(¥) compute

é Iu," + c2|Vuj? dx =2 Iu,u,, + c2VuVu, dx.
Integrate by parts in the second integral to find
=2 Iu,(u,, — 2Au)dx = 0.

Thus the multiplier u, is appropriate for deriving this energy law. It can also
be used to give an alternate proof of the theorems of finite speed and domain
of influence (Problem 1). Such multiplier methods have the advantage of
adaptability to variable coefficients and nonlinear problems.

Another derivation of the energy law is to note that

u, = sin(tcl g — costic! )i ZIf.
¢*1Eji = sin(rc|ENg + costicl E)elZ1S.
Take real parts, square. and add to find
/\ h ) ] was Y ay Y ay? %, vy - 9
(Re'w,)* + c*|1*(Re i) = (Re g)* + c*1E1*(Re fIE).
A similar identity is valid for the imaginary parts. Adding yields
N2 L 212121012 2 2212 2
[, + LERIR = 191* + 13RI (5)

The left-hand side is the “encrgy at frequency &™. It is the energy of the spring
equation (3) satisfied by (-, ¢). Equation (5) shows that there is conservation
at each ¢. Integrating d¢ yields the global conservation of energy. More
generally. one can multiply by (&)**~"' to find that

Nl 3e-s + 2V, ullj... is independent of . (6)

These estimates suggest the following extension of Sy

Definition. D* (D for Dirichlet) is the closure of & (R?) in the norm |jullp. =
\\V,u\l".-..

Then D*is a decreasing scale of Hilbert spaces with D* > H*, and foranyo <5,
D*nH° = H*.
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Theorem 2. For any seR and teR, the map S, extends uniquely
to a unitary map of D’ x H*™' 1o itself. The corresponding generalized

solution u = (Sy(/, D tiesicomponent  Satisfies ue C(R:D*) and for |a| > 1,
a.ue C(R: H®(R)).

The spaces D* are naturally associated with the wave equation. The case
s = 1 is the R* analogue of the natural norm in the variational approach to
the Dirichlet problem (see §5.2).

To estimate the H* norm of the solution u(t) in Theorem 1, note that, since
G ScellEf + Xiet<1 )

"u"'z‘o‘nd) S C.("u"%‘(n‘) + J

Kl<1

li#($) JC)-
Next use formula (4) for Fu together with the estimates

lcos(ct|é))| < | and w S |t}

ciél

to show that for any ¢ < s there is a constant (s, o) so that

L 14()1? dE < (s, a)(Jt) Hgllye + ILf | ge)
l<1

Thus
V(g < c(s, o)(ligga-+ + 1SN0 + 12! lgll.). (7

Thus u may grow linearly in time, but the growth depends only on very weak
norms of the data.

Therefore, if f, ge H* x H*™!, then ue C(R: H') and satisfies (7). As in

previous sections, the generalized solutions have many equivalent character-
izations.

Theorem 3. If fe D', ge H*',and ue C(R: D')ACY(R: H*™') with u(0) = f
and u(0) = g, then the following are equivalent:

(1) uis the generalized solution with Cauchy data /.9
sin(ct|S|)
cid|

(3) For any ¢ € C3(R?), u(t, *), ¢()) € C}(R,) and
d -
5 Sult, x), @(x)) = Cult, -), c*Aqp(-)).

2 i=¢ + f cos(ct| &]).

(4) For any ¥ € C3(R'*%), Cu(t, ), ¥(1, -)) € C}(R,) and
dz
T:““‘" W ) = ult, +), (W, — AV, °)) + (e, -), ¥e, ).

(5) (&} — c*A)u = O in the sense of F'(R"**).
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(6) Foranyy € CF(R x R andt, <1,

J z Cu(), W ) — A(1)) dt = (Cult), Y (1)> = <Y (1), u (D)) |

PROBLEMS

Let T be the dunce cap region {(f, x)€ R x R*:¢ > 0 and |x| < R — ct}. Using the
Giobal Holmgren Theorem, we have shown that any ue C 4T) satisfying the wave
equation, u,, — c2Au = 0, and whose Cauchy data vanish on I’ n {t = 0] must vanish
in . The same result can be proved by the energy method, which works for problems
with nonanalytic coefficients and even for nonlinear problems. This type of calculation
is very important and this problem is strongly recommended. Given such a u define

e(t) = I (Eu()? + c*lgrad, u(0)]?) dx.
ixiSR=-ct

1. Provethatifu € C¥(T : R)satisfies u, — c?Au = 0, ¢ > 0, then e(i) is a nonincreasing
function of 1. If u = u, = 0 at ¢ = 0, conclude that « vanishes in I'. Hint. For any
T > 0, multiply the equation by u, and integrate by parts in F~{0 <t < T;
motivatied by the proof after Theorem 1.

In the next problem you are asked to analyze the wave equation with an elastic term
bu, b > 0, and a viscous friction term au,. a > 0. The initial value problem is

éu—Au+au +bu=0 inR'"Y
u©. - })=f(),  u4(0.°)=g()

2. Prove that for fe H*(R*), g € H*'(R?), there is a unique u € Nz3 CI(R: H*™/(R7))
solving the initial value problem.

3. Prove that if a > 0, then the solution satisfies

lim “(?,ju(()‘ln--:qaa, = 0.

[ S ¢
Hint. Express the desired quantity as an integral in § space and apply Lebesgue’s
Dominated Convergence Theorem.
DiscussiON. This problem shows that the solution is driven to zero by the friction.
The cases j = 0, 1 show that the classical energy tends to zero. The energy does not
decay exponentially fast. The reason is that low frequencies are damped slowly. This
is a general principle. Systems whose lowest frequency is strictly positive tend to be
driven to zero exponentially fast by dissipative mechanisms (see Problem 5.7.5).

4. Prove that for f€ C™(RY), g € C®(R?), there is a uniqueue C*(R x R) solving the
initial value problem u, — ¢2Au = 0, u(0) = f, u,(0) = g. Hint. Uniqueness follows
from Problem 1. For existence choose a locally finite partition of unity, {«,}, for R
with ¢, € CZ (R*). Lety; solve Ou; = 0,u,(0) = fo,. d1,(0) = ;9. Show that the series
Y u; is locally a finite sum, and therefore is a solution of the initial value problem.
Discussion. The same sort of patching argument can be used to prove solvability
for f,g € 9'(R).

5. If ue YC/R: H*/) satisfies Ou = 0 and (0, -) = 0 on [x[ < R, then u =0 in



§3.8. Fourier Synthesis for the Cauchy-Riemann Operator 121

{(t, x): |x] < R — c|t]}. Hint. Consider the solution u, to Oy, = 0, 4,(0) = Jo* u(0),
6,u,(0) = j, & u,(0). Be careful to justify the passage to the limit.

6. Use Problem 5to show that if feH'\ge H" ', andu e [YC/R: H* )is the solution
to Ou =0, u(0) = f, 4,(0) = g, then

suppuc {(t,x): Ay eE)(Ix -yl < c1)}, E=msuppfusuppg.

§3.8. Fourier Synthesis for the
Cauchy-Riemann Operator

In §1.1 we showed that the initial value problem
(G -idJu=0  u,)=/() (1)

is badly set, in the sense that there exists a solution only if f is real analytic,
in which case the solution is the holomorphic extension of f. The Fourier
transform gives us complementary information and gives precise assertions
concerning general ill-posed initial value problems. The first goal is to show
that the set f € (R?) for which a solution exists is “thin™. After that, following
Hadamard, we prove a strong version of discontinuous dependence on initial
data.

Suppose that for some s, perhaps very negative, u € C(R : H*(R%)) satisfies
(1), then in the sense of 2°(R**%), u, = iu_, and the right-hand side is contin-
uous with values in H*~'(R’). It follows (Problem 1) thatu € C}(R: H*"!(RY)).
Taking the Fourier transform yields 9,¢ = —¢£d. View this as an identity in
2'(R, x R*). Itfollows thatin 2'(R, x R{), &,(e"a) = 0,50 1(t) = e™*f. The key
observation is that [ is multiplied by a factor which is exponentially large as
¢ = (sgn f)oo. Since f€ &, polynomial growth is tolerable, being compensated
by the rav?id decrease of f. If f is not exponentially small, for example,

= ¢~ ®7" thene“Ff is not the Fourier transform of an element of &'(R?).

In order that e™ T*F lie in H’ it is necessary and sufficient that

J-(C)z’(e‘m + DS@)P d& < wo. )

Proposition 1. If fe¢ #(R’) and there is an s € R and a solution u € C([0, T]:
H*(R3)) of (1), then (2) holds. Conversely, if  satisfies (2), then d(t) = e Ff
defines a C([0, T] : H*) solution.

ProoF. The first statemenmt is proved above and the converse is
straightforward. . O

Ifone views u as a holomorphic function of x + it, the above result identifies
the set of H* functions of x which are boundary values of holomorphic

U U oo . R bt
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functions in the strip Im z < T, and such that the map t—u(- + it) is contin-
uous on [0, T] with values in H*. This is a result of Paley—Weiner type.

ExampLes. 1. If f has compact support K, then u € C*(R, : ¥(R,)) and Fu(y)
is a smooth function with support in K for all y. The set of such data is dense
in #(R,). Nevertheless, the set is thin as shown in Theorem 2.

2. If f= ¢~ %", then (2) holds for no s € R. The point is that (2) is rarely
satisfied for fe &. In fact, using the Baire Category Theorem one can show
that

{fe Z(R*):(3s € Rand T > 0) such that (2) holds}

is of first category in the complete metric space & (Problem 2).

Theorem 2. The set of fe S(R?), such that thereisa T >0 and an se R so
that (1) has a solution ue C([0, T]: H*) or C([ —T; 0] : H?), is a set of first
categoryin &.

Next turn to the construction of examples showing strongly discontinuous
dependence on initial data. The Fourier transform construction yields solu-
tions as linear combinations of the exponential solutions e™*“e***, & € R. The
idea is that as & = —cc the initial values of e **e’** are bounded but the
solutions explode exponentially for any ¢ > 0. For k € N fixed, the value of
the solutions, (&) e~ e* = u, at (t, 0), ¢ > 0, grow exponentially as { tends
to ~ oc, but their initial data converge to zero in the sense that the derivatives
of u; of order less than or equal tok — 1 converge uniformly to zero in R. This
is Hadamard's construction.

A skeptic might think that the source of this problem is that the data do
not converge to zero as | x| — co. By taking a superposition over a range of &,
one vitiates this criticism and proves a much stronger discontinuity theorem.

Theorem 3. There is a family u, € C*(R: ¥ (R?)) of solutions to (9, — id,)u, = 0
and a g € S (R?), so that as € —~ 0,
&-lim u,(0) = 0, &)

and
forallt #0, tim{u,, @) = cc. 4

The explosive behavior (4) implies that for any s € R, no matter how nega-
tive, Jlu(t)l e — 0 ase— 0.

ProofF. Define ve C®(R: #(RY) by Fo () = e “Pe e " Then
(8, — id,)v, = 0,and as ¢ — 0, v, converges formally to the misbehaved solution
with data #* exp(— ({)'?) Define ¢ by Fo = exp(— <$)"*). Then

<D‘(‘), ¢> - Ie-"e"we'(c>“ d{_
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The integrand is strictly positive and integrable. For ¢ > 0, theintegral islarger
than the integral over the interval of length one with center at —1/e. In this
interval the integrand is bounded below by ce, ¢ > 0, as & tends to zero. Thus

(v,(2), @) = ce'™.

For ¢t < 0, an interval about 1/e yields the same lower bound. Let u, = ey, to
complete the proof. O

PROBLEMS

1. Suppose thatu € 2'(R, x R¢)n C(R: H'(R’)) and the distribution derivative du/d¢
lies in C(R : H*(R*)). Prove that u € C'(R: H*(R*).

2. Prove that for any se Rand t € R\0

{fe S(R): j(&)"'(c"" + DS d < oo}

is of first category in the sense of Baire. Hint. Use the uniform boundedness principle
as sketched in the next paragraph.

Suppose that E anpd F arc complete countably normed vector spaces (= Fréchet
spaces). A subset is called bounded if and only if it is bounded with respect to each
of the countable number of defining seminorms. This is equivalent to requiring that
the set be bounded in the natural metrics defining the topology. A sequence of
continuous linear maps A,: E — F is called uniformly bounded if and only if for any
bounded subset B < E, the set | A,(B) is bounded in F. The Uniform Boundedness
Theorem asserts that if A, is not uniformly bounded, then the set of x € E such that
{A(x)}2 is bounded in F is a set of first category. Apply this resuit to the family
of maps £ (&> (e + D(E)x-n.af) from L(R') 10 L3R’}

Discussion. Call the setin Problem 2, B, ,. Then B is increasing in s and decreases
as t moves away from 0. Thus
U Bs.l = U (B-n. i/n v B‘l. ‘l.‘l)

saR.120 i<a<x

is a countable union of sets of first category, hence of first category. This proves the
conclusion of Theorem 2.

§3.9. The Sideways Heat Equation and Null Solutions

Sometimes initial value problems arise with a time parameter which is not the
physical time. Consider, for example, the following inverse problem for the
heat equation. An observer at the origin x = 0in R} observes the temperature
u(t, 0) = f(¢) and the heat flux u,(t, 0) = g(¢) of a solution to the heat equation
u, = u,, in x 2 0. The problem is to recover the full temperature field u(t, x).
The boundary value problem is then

Uy = Uy, (1)
ut,0)=f, u(,0)=g P4
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This is a noncharacteristic Cauchy problem with “time” variable x and “space”
variable ¢. Since the initial line x = 0 is noncharacteristic the observations
determine all the derivatives of u at x = 0, so that the observer has all the
information which could possibly be obtained at x = 0.

The exponential solutions are given by the roots of —¢? = ir, that is,
§ = £(¢/i)"2. The solutions exp(itt + i(z/i)"*x) for t real are bounded on
x = 0 and grow exponentially like exp(+ |1]'2x) suggesting that the initial
value problem (1), (2) is not well-posed since the rate of growth increases
without bound as t — cc.

To analyze further, take the Fourier transform in the “space variable™ ¢ to
obtain

U, = —ith(z, x), (3)

where t denotes the transform variable associated to t. Equation (3) has the
solution

iz, x) = s‘“\/‘@‘ 3(1) + (cos \Jirx)f(x). @)
1T
Here =* for x € )0, 1{ is defined for = € C\]— ac, 0] as the branch with 1* = 1.
Note that the amplification factors, sin \/;;x/\/;'; and cos Ji_rx, grow like
exp(t|*?x) as 1 — + co. Thus, for typical f, g € &, the products in (4) will not
belong to &'(R*) which yields nonexistence and discontinuous dependence
results as in the last section.

Theorem 1

(@) Thesetof f,ge & x &, with the property that for some x >0andse R
there is a u e C([0, x] : H*(R?)) satisfying (1) for 0 < x < x and (2), is a set
of first categoryin & x &.

(b) For any x > 0, there exists a sequence of solutions u, € C*(R! : #(R,)) to
(1) and ¢ € S (R,) such thatu,(t, 0), &,u,(t, 0) converge to zero in ¥ (R*) and

lim Iu,(:, x)o(t)dt = cc.

Part (b) shows that in spite of the unique determination of u (Holmgren) the
determination is so discontinuous as to be practically useless.

For the Cauchy-Riemann operator, the amplification factors grow expo-
nentially in the Fourier variables, so only Cauchy data whose transform decay
exponentially have a chance for existence. These data are real analytic and
therefore possess unique continuation properties. In the present situation data
whose transform decays more rapidly than e~ Vi suffice. For example,

G(r, x) = 2re*VHe 0, aeh [
yields the solution
u(t, x) = _[ eUrexJiigin g (5)
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As |7] = o the first factor in the integrand decays like exp(—|t|®) and the
second grows at most like exp(ix| 17|"/2), so the integral is absolutely conver-
gent for all ¢, x since a > 1/2. As Fu(t,0) = (27)*2 exp(—(it)*}, u in not
identically equal to zero.

Let I, denote the contour Re(z) = a 2 0 oriented in the direction of the
increasing imaginary part. Then

u(t, x) = J. eX =) e"Te gz (6)
Fo

The integrand is holomorphic in Re(z) > 0 and continuous in Re(:) > 0.
Starting from (6) we prove that u vanishesin ¢t < 0.To do this, shift the contour
toward the right.

Denote by F{t, x, =) the integrand in (6). Since e < ce™*"for Re = 2 0 and

Mg = sup le* =" ‘e~ *?| < .
xisR.OgRe(2)< x
it follows that F = O(exp( ~|Im z{*/2) uniformly for O < Re() < x. This suf-
fices to justify a contour shift using Cauchy’s Theorem to show that

U(t. x) = '[ ex(':i‘ le-:‘e:l d:. (7)
e

Forany a > 0, R > 0, the derivatives of the integrand in (7) satisfy
|82 F| < (R, a, 7, B)(1 + 1=M*P)e™™2,  forall |1, x| <R

Thus differentiation with respect to ¢, x under the integral sign in (7) is justified
and proves u € C*(R x R).
For | x| < R estimate

Ju(t, X)} < e"M,j le~="?||dz).
o
The integral is largest for a = 0, so |ul < c(R)e. If ¢t <0, pass to the limit
a — o0 to show that u = 0 for t < 0. This proves the following theorem.

Theorem 2. There is a nontrivial u € C*(R, x R,) satisfying the heat equation,
U, = U,,, and vanishing identically for t < 0.

Such solutions are called null soiutions. This result is typical of characteristic
initial value problems. In Problem 3 you are asked to construct similar null
solutions for Schrodinger’s equation. The reason that such solutions do not
violate the uniqueness theorems of §3.6 is that the solutions are not continuous
functions of time with values in H*(RY). They grow exponentially fast as
|x] —» o0 and are not tempered distributions in x. The interested reader is

encouraged to study the asymptotics of the solution (5) when x grows with ¢
fixed.




126 3. Solution of Initial Value Problems by Fourier Synthesis

PROBLEMS

In the first problem you are asked to prove a result about the time T = 0, when

a null solution of the heat equation, as in Theorem 2, ignites. Suppose that
ue C°(R! x R!) satisfies

U, = U,,, u=0 for t<O.
Define the ignition time T by
T =sup{s:u=0fort < s}.

1. Prove that all points (T, x), x € R, lie in the support of u. Hint. Use the Global
Holmgren Theorem.

DiscussioN. This shows that the solutions ignite at all points simultaneously.
It is a nontrivial theorem of Widder { W] that there are no nonnegative solutions
vanishing fort < 0.

2. For any x € i, 1[, show that T = O for the solution (5).

3. Construct null solutions for Schrodinger's equation. Hint. Consider the sideways
problem.

§3.10. The Hadamard-Petrowsky Dichotomy

The previous sections present examples of a dichotomy between initial value
problems with a satisfactory existence theory and those without. The idea is
simple. Consider a constant coeflicient operator,

P(D, D)= S A(D,)Di, )

i=
of degree m with respect’to t. The initial value problem we consider is
Pu=0 in t20, (2)
Dlul,no =fie LR, 0O0<jsm-1 3)

In all the examples we have discussed so far, A,, was constant, but there are
examples in mathematical physics with A4,,(D) nonconstant. For example, the
linearized BBM (Benjamin-Bona-Mahoney) operator

P=(-2% + a2 @)

arises in a model of long waves.
We assume throughout this section that

A(E)#0 forall &eRe (5)

The Seidenberg-Tarski Theorem (see Hormander 11, Appendix 2, Ex. A.2.7)
shows that there is a ¢ > 0 and 8 € Q such that

min{|A.():{eR*and |{| = p} =cp’(1 +0(1)) as p— . (6)
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In particular, there is a ¢ > 0 and N € N such that
4.1 2O forall {eR (7)

Thus f+— A, (D)f isa 1-1 onto map of & to itself (Problem 2.1.3). Inexamples,
(7) is usually obvious. For example, the BBM operator has 4,(§) = 1 + |&1%
In an attempt to construct a solution, take the Fourier transform in x to find

P(D,, &)i(t, &) = 0, 8)
Dli(0, &) =f(&). j<m-1L 9)

For each ¢ this is a Cauchy problem for an mth order ordinary differential
equation in time, thanks to (5). Solving determines ii(t, §) € C*(R, x R}).

To perform an inverse Fourier transform we need to know that i does not
grow too fast as |£| - cc. As the Ff; are rapidly decreasing as [{] — o, we
must look at how large solutions of P(D,, £)v = 0 can be compared to the size
of their Cauchy data. The key is that the general solution is a linear combina-
tion of exponential solutions e where P(z, §) = 0 (if there are multiple roots.
polynomials in t appear as factors). Now, for such an exponential solution
and t > 0, the solution is of magnitude e~ "™* times the magnitude at time
zero. As the Ff decay faster than {) " for all n we can tolerate polynomial
growth in £ for ¢ fixed. This leads us to the following condition.

Definition 1. The differential operator satisfies the Hadamard- Petrowsky con-
dition for forward evolution if and only if there exists ¢, n such that

EeRY, t1eC, P(1,§)=0 = e "< (&)™ (10)

We call this the H-P condition for brevity. Taking logarithms shows that
(10) is equivalent to

EeRY teC, P(r,8)=0 = -Im@r)<cIn2+|E) (10)

That is, —Im t can grow at most logarithmically in |[|. As the 1 are roots
of algebraic equations only power law growth is possible. Precisely. the
Seidenberg-Tarski Theorem shows that

max{—Im(z): P(z, &) = O for some £ € R! with x| = p} = cp*(1 + o(1))
(11)

as p — . Thus the only way that (10)' can be satisfied is if x < 0, in which
case — Im(7) is bounded above.

The sufficiency of the logarithmic bound for solvability was proved by
Petrowsky. That at most logarithmic growth implies boundedness was proved
by Garding [Gard] in the case that ¢ =0 is noncharacteristic. In that
case operators satisfying the Hadamard-Petrowsky condition are called
hyperbolic. The utility of the Seidenberg- Tarski Theorem in this and other
contexts in the theory of partial differential equations was discovered by
Hormander.
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Theorem 2. Suppose that A(£) # 0 for all £ € R? and that the H-P condition
for forward evolution is satisfied. Then, for any f;e ¥(R*),0<j<m -1,
there is a unique solution ue C®([0, cof:L(RY) of (2), (3). The map
JouSis - -2 fmey) = W is continuous from & (R4 to C=([0, oof : L(R)).

The natural backward and forward-backward versions are true. For evolu-
tion into the past, ¢ < 0, the H~P condition is Im(t) > ¢’. For evolution
forward and backward in time, the conditionis |Im 1| < ¢”.

ProoF oF THEOREM 2. If u € C®([0, cc[ : L (R?)) is a solution, we have shown
that d(e, &) € C=([0, oo x R‘) must satisfy (8), (9). Since Fu is determined,
this proves uniqueness.

For0 <j <m —1,define Mj(t,{) e C*(R x R’) to be the solution of

P(D,, {)M; = 0, (12)
. _ 0 if k#J,
Dy M(0,¢8) = {l it k=j (13)
Then we have
i =Y M(t, HFS(E). (14)

If we can show that the right-hand side of (14) belongs to C*([0, oc[ : &), then
the inverse Fourier transform yields a solution ue C*([0, oc[ : ¥). Thus, it
suffices to show that for any x€ N'** and T > O there is a ¢ = (2, T) and
N = N(a, T) such that

&2 M| < c(&HY (14),

on [0, T] x R:.
The first step is to observe that all the M; can be expressed in terms of M, _, .
Toward that end, note thatforj <m — 1 and t =0,

(1 if k=j,
3,*6,M,ﬂ = a:+1Ml+1 =<0 lf k #jandk <m-— l,
4SO i k=m— L.

The last identity follows from (12) upon solving for the D} term and using
(13). Thus

M; =M. + And) 4,0 (OM,, -

m — 1 — j applications of this yields an expression for M; in terms of M,,_,
which shows that it suffices to prove (14), for j = m — 1. O

For M,,_, we use an explicit solution formula.

Lemma 3. The solution of the constant coefficient initial value problem
0 = P(D)u = (3uD]" + @ DJ"™' + 2+ + Go)u,

_j0 for O0<jsm-2,
D,‘u(O).-{l for j=m-1\,
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is given by
a, e'™

=51?i rmdt,

where I is any rectifiable arc in C which winds once about each root of P(z) = 0.

Proor. Diflerentiating under the integral defining u yields

_ a, P(t)e™ =
PD,)u = i &r P) dt =0,

by Cauchy’s Theorem.

The same theorem shows that if all the roots of P(t) lie in the disc |t| < R,
then
a- e‘u

u= z—u;. - m dz.

Forjsm- 1,
D’u(0) = a—", § t//P(1) dr.
2%i J \ei=n

For j <m — 2, the integrand is O(R™2?), so the integral is O(R™). Letting
R — oo yields D/u(0) = 0. On the other hand, as R — o,
m-]
DP-u(0) = o= - .
u0) = o i,,.. a0+ O/R) &

The integrand is equal to (a,,t)~! + O(R~?). Thus, as R — cc, the right-hand
side converges t0 1. a

The lemma yields the following explicit formula

A(8) e’

M - ) = )

(80 =25 &, e ®
where I' = I'({) is a contour in C enclosing all the roots, z, of P(1, ) = 0. A
good choice of T is needed. Wetake I to be equal to the boundary of Q, where
02, is the union of the discs of radius 1 with centers at the roots y=1(¢)of

P(t,{) = 0.

The length of I is at most 2xm since there are at most m discs. The H-P

condition shows that —Im t < ¢ on I, which implies that for t e I'(¢),
|e®| < e”. Finally, on T,

|P(e, ) = | AN [T 17 — 1] 2 1441 = <>,

which bounds the denominator of the integrand away from zero. It follows
that

IMyi (8, §)I < c'e“(EHN,
which is the @ = 0 case of (14),_,.
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Differentiating under the integral sign yields

Q,(x, §)e'™
r P(9)
with a polynomial Q. Since the coeflicients of P are polynomial in { and

|4 = (&)Y, the roots of P are O((&)Y) for some N'. Thus, for t€T,
It} < c{EDV'. This together with our previous estimates yields (14),,-,. 0

D".(M = dt

If the H~P condition is violated, then (11) shows that suitable exponential
solutions e™e’™, £ € RY, | €| — oo, explode like <" for some a > 0. This yields
discontinuous dependence and general nonexistence theorems in the style of
Theorems 3.8.2, 3.8.3, and 3.9.1.

Theorem 4. Suppose that A, (E) # 0 for all £ € R? and that the H-P condition
for forward evolution is not satisfied. Then:

(a) Generic Nonexistence. The set of (fo. .-+ fm-1) € L(R)", such that there
isaT>0 seR, and ue C™([0, T]: H*(RY)) satisfying (2), (3), is a set of
first category in & (R*)Y™.

(b) Discontinuous Dependence. There is a sequence of solutions u, € C*(R:
S(R*) to Pu, = 0 and a ¢(t) € C([0, oc[ : &) such that the Cauchy data,
&/u,©0, ), 0<j<m—1, conterge to zero in &, and as n— x,
lim {u,(¢), @(t)) = o uniformly on compact time intervals in [0, xc[.

PROOF. (a) If u € C*([0, T] : H*(RY))is a solution with data f, then Fuis given
by (14). Thanks to (11) we have

max (M(T, &) 2 c'e®”  with a>0. (15)
Ri=p

Then u(T) € H* yields
2
ﬂZ M(T, &)ff,-(fb‘ (VB JE < 0.

Asin Problem 3.8.2, (15)implies that the set of such f;is of first categoryin .
(b) The Seidenberg-Tarski Lemma implies that —~Im t < c(¢)® for some
b e Q. Define u, by

a2, = w-(:d)‘e%{)"’Mn_l(;, &), &E= 1/n,
with ¢ > b and a as in (15). Define ¢ by
¢ = e O M, (8, (1 + | My (1, OI)™.

To show that (u(t), @(t)) explodes compute in ¢ variables, noting that
the integrand in {2(t), ¢(t)) is nonncgative. Equation (11) shows that the
integrand is bounded below by ec’ exp(ct |£°) exp(=|£1~2#?) at points {(¢) on
the spheres J¢| = 1/s. Using the bound (11) and the formula for 9;M,,_, one
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estimates,

18 Mg, &) < (D" explet|ZI°).

It follows that the lower bound for the integrand holds, with new constants,
on a ball B(£(¢)) with radius r decreasing as a negative power of |§|. This
bounds the integral below by a multiple of &* exp{ct/e* ) 0

The criterion of H-P is easily and broadly applicable. It is one of the main
recipes of the theory of partial differential equations.

Summary. To check if the initial value problem for P(D,, D,) is well-posed in
¢ > 0, find the roots of P(t, &) = 0 for ¢ € R*. The good problems are those for
which —Im tis bounded from above.

ExampLes. 1. P =@ + ) ;6 + b. Then P(r,{) = it + iy a;&; + b. The root
tisgiven by t = —Y a;¢, — b/i. If at least one of the a, say a;, is not real, then
by choosing ¢, = 0 for k # j, the imaginary part of t can be forced to be
arbitrarily large. positive, and negative. Thus the H-P condition is violated
for both forward and backward evolution. On the other hand, if the a; are real
then {Im t| < |b|, and the condition is satisfied in both directions. In this case,
the initial value problem is explicitly solvable by integrating along the integral
curves of the vector field 3, + ¥ a;3 as in §1.1. The same method works when
the coefficients g; are smooth real-valued functions of (t, x), and is called the
method of characteristics.

2, 3, 4. The heat equation, with it = —|§|?, satisfies H-P for forward
evolution and not backward evolution, while the wave and Schrodinger
equations satisfy H-P for forward and backward evolution. For the wave
equation, t = *|¢|, and for the Schrodinger equation, T = —~]&)2. In both
cases Im t = 0. This is typical of conservative equations.

5, 6. The Laplace equation u, + u,, = 0 yields t = +i|{| with imaginary
parts large in both directions, so violates H-P both forward and backward.
In fact, if d 2 2, no eiliptic operator can satisfy the H-P condition (Problem
4). On the other hand, for d =1, P(D,) is elliptic and satisfies the H-P
condition (there are no & # 0 so the condition is automatic).

7. For any m > 1, &" satisfies H- P forward and backward since foots are
t = 0. For m 2 2, this example is unstable, being destroyed by lower-order
perturbations. For example, 32 — 9, is the sideways heat equation of §3.9. The
roots are T = +(i€)'2 and the H-P condition is violated in both directions.

The example 3™ also illustrates a phenomenon of weak well-posedness or
loss of derivatives. To estimate derivatives of a solution up to order k requires
more than k derivatives at ¢ = 0, To sce this note that the solution of the initial
value problem is given by

U= )6: (/1) (x).
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Thus
Hu@lae < ) Y. 1fllge = c©} Y 16/u(0)l ..

To show that u(t)e H*, one needs d/u(0) e H* for j < m— 1. One needs
S + m — 1 derivatives at ¢t = Oto guarantee s derivativesat time ¢. The estimate
reflects a loss of m — 1 derivatives. In analogy with (Ju = 0, set

e= Y |duj}.-,
jsm—1

Then e,(t) < c(t)e,,n-;(0), and no better. Here the loss of m — 1 derivatives is
clear. The initial value problem is said to be weakly well-posed. Such weak
well-posedness is often destroyed by small perturbations. For example, if
m 22, 0" + £, does not satisfy the H-P condition (Problem 1). Similarly,
variable coeflicient problems whose “frozen™ problems are weakly well-posed
often do not inherit the well-posedness. Ditto for nonlinear problems whose
linearization have frozen problems only weakly well-posed. For this reason,
it is important to identify, among the H-P good problems, those which
are more stably well-posed. The heat, Schrédinger, and wave equations are
examples.

A variety of ill-posed initial value problems appears in the descriptions of
instabilities in physical systems. The ill-posedness is then desirable and is used
to study the modes of explosion. Sometimes nonlinear problems with well set
initial value problems have ill-posed linearizations. The linear theory then
predicts the manner in which solutions grow until the linearization hypothesis
is no longer appropriate. The simplest example is the ordinary differential
equation of Van der Pol which models self-excited periodic oscillations.

PROBLEMS

1. For each of the following operators determine whether the H-P condition for
forward/backward evolution is satisfied:
(i) (ii) &, £ (4)°.
(iii), (iv) 4, + (4)>.
(v) 0, +(0,)" meN.
(vi) The linearized BBM equation (5).
(vil) 3 + ed,,m = 2, e € R\0.

2. Find necessary and sufficient conditions on the real coefficients, a and b, so that
Oy + ad,, + bd,, satisfies the H-P condition for forward evolution.
Discussion. It is interesting to take this as a first step in finding the most general
homogeneous operator of order 2 on R*** satisfying the H-P condition.

3. For the wave operator g, — A, with x € R, consider the sideways Cauchy problem:
(0 — A)u = 0,ul, g =f,u, 1, .o =g, where fand g belong to YR, xR L)
This corresponds to reconstructing the solution from observations at x, = 0. Prove
that for d = 1, the sideways Cauchy problem satisfies the H-P condition for both
forward and backward evolution. Prove that for d > 1, the condition is violated in
both directions.
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DiscussioN. Analogous inverse problems are very common in geophysics where one
observes, for example, seismic waves, at the surface of the Earth (x, = 0) and tries
to find out what is going on below the surface. There are many very good algorithms
for d = 1. Unfortunately, d = 2 is more reasonable and the ill-posedness from
Problem 3 renders this case extremely difficult. Current methodology is not very
good.

4. Prove that if dim(x) = d > 1 and P(D,, D,) is clliptic, then it can satisfy the H-P
condition for neither forward nor backward evolution.

§3.11. Inhomogenous Equations, Duhamel’s Principle
If P(D,, D,) satisfies the Hadamard-Petrowsky (H-P) condition for forward
evolution, then we can also solve the inhomogeneous initial value problem,
Pu = F € C*([0, cc[: Z(R))), )
é/u0,-)=0, O<j<m-1L (2)
In many practical problems, the F in Pu = F(t, x) represents external sources
or stimuli while the homogeneous, F = 0, problem is free motion.
ExampLEs. 1. u, — vAu = F(t, x) represents heat flow with external source of
heat F(i, x) calories per unit volume per unit time.

2. The wave equation u, — c*Au = F(t, x) with x € R? models the small
vibrations of a2 membrane with external force F(t, x) per unit mass per unit
time. For example, a membrane in the presence of a constant gravitation field
yields u, — ¢*Au = g/p (p = density).

If u e C*=([0, oo : P(R*)) is a solution of (1), (2), then Fourier transforma-

tion in x yields an inhomogeneous ordinary differential equation for a(t, &),
P(D, &)@, ) = FF(1, 8), 3)
u0,6)=0, O0<gj<m-L 4)

Lemma 1 (ODE Duhamel). If P(D,) = 3, D" + Gu-DI"™' + -~ + aq is a con-

stant coefficient ordinary differential operator, a,, # 0, and F(t) e C*([0, «o[),
then the solution w € C*([0, oo[) to

Pw=F, dwl)=0<jsm—1,
is given by

w(t) = ‘r G(t — s)F(s) ds,
0

where G is the solution to
PG=0, D/G=0 forj<sm—2,  DI'G(O)=ila,.
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PROOF. Define H to be G for t >0 and zero in t < 0. Then He C* 3(R)
and D*'H(0) has a jump discontinuity with jump [D”'H] = i/a,
at t=0. Then in D'(R), 6/H =(3)G)xo, o for j<m—1, and 9"H =
(O G tjo. oy + (" H]S. Thus

P(D)H = “T"[D;--' H}6 = 6.

Choose ¢ € C*(R) with ¥(1) =0 for ¢t <1 and =1 for t>2 Let
F, = y(n)F.

Then P(D,)HeF)=6+F,=F, In addition, Hs F, converges to
H+(Fxi0,o1) in C™"Y(R) (exercise). Passing to the limit n — yields the
desired result. 0

Apply the lemma to i(t, £), recalling the definition (3.10.! 1), (3.10.12) of
M, _, to find

a, ¢) = L Mu-1(t — 5, §)F F(s, §) d&. (5)

One finds that & € C*([0, o[ : #(R?)) and that 4 is a solution of the initial
value problem (3), (4). For this, the estimates (3.10.14) for M., _, suffice to justify
differentiation under the integral sign (exercise).

Theorem 2. If P satisfies the Hadamard-Petrowsky condition for forward
evolution, then for any F e C>([0, oc[: L(R?) there is a unique solution
ue C>({0, oo : L(RY)) to (1), (2). The solution is given by formula (5).

Formula (5) has several alternate descriptions. For example, in the last
section we saw that F*M__,(¢, £)FS = Sp(1) f is the value at time ¢ of the
solution of the initial value problem
0 if jsm-=2,

S j=m-—1.

Sp is a propagator for the evolution equation Pv = 0. Then (5) becomes
Duhamel’s formula

Pv=0, dlux)= {

u(t) = I ' Sp(t — s)F(s) ds. (6)
(1)

As a typical example of how Duhamel’s formula can be used to solve
inhomogeneous equations with less regular F, consider P = 8, — vA, Re(v) > 0,
thereby treating the heat and Schrédinger equations simultaneously.

For F € C*([0, o[ : &) the solution to

(0, —vAu=F, ul,m =0, )

is given by (6). Let S, denote the propagator of & — vA. The H* norm of u is
estimated by

u@ly. < L US,(t ~ 0)F(o)llg. do < L 1F (o)l . do. ®)
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This suggests that for F € L, ([0, o[ : H*) the initial value problem (7) has a
solution in C([0, oo : H*). Before proving this we show that several ways of
defining the notion of solution to (7) are equivalent.

Proposition 3. For F € L}, ([0, o[ : H*)and u € C([0, o[ : H’) with u,.o = 0,
the following are equivalent:

(i) For all t 20, Duhamel's formula (6) holds. Here the integrand is in
LY([O0, t]: H°).
(i) For any function ¢ € C3(R*) the function t+— u(t), @) is absolutely con-
tinuous on [0, oc( and

{u(t), @) = v(u(t), Ag) + (F (1), ). 9)
(iti) Forany y € C¥(R x R andt, < t,,
I , Cu(t), (— & — vAW) — (F(). y(1)) dt = —ult), ¥(t)) "

(iv) (& — vA)u = F in the sense of distributions on ]0, <[ x R*.

This result is like Theorems 3.5.1, 3.6.4, and 3.7.3. The proof is omitted. When
the equivalent conditions are satisficd we say that u is a solution of (7).

Theorem 4. If Re(v) > 0,s € R, and F € L; ([0, oc[ : H®), then there is a unique
solution u € C([0, o[ : H*) to the initial value problem (7). The solution satisfies
the estimate

Nu(ll g4 < L IF (0}l 4o do.

PRooF. Choose F, € C2({0, cc[ : ¥)such that F, = Fin L, ([0, cof : H*). The
estimate (8) applied to u, — u, shows that u, is a Cauchy sequence in
C([0, oof : H’). Let u = lim u,.

Then for @ € C2(R?), (u,, 9> = {u, ¢) in C([0, =c[), and

d
= e 0) = i, vAp) + (F.(t), @) = (u, vAe) + (F(1), @)

in LL([0, oof). It follows that (u, ) is absolutely continuous and that (9)
holds. This completes the proof of existence.

Uniqueness is a consequence of uniqueness for the homogencous equation
since the difference of two solutions is a solution of the homogeneous equation
with zero initial value. 0

Remark. If v € iR then [0, oc[ can be replaced by R, that is, the solution exists
in both the forward and backward directions of time.

Theorem 3 gives an adequate response (o the question “What is the reg-
ularity of a solution with respect to x?". For regularity in ¢, one uses the
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differential equation to express the time derivatives of u in terms of x deri-
vatives of u and derivatives of F. The equalities are as distributions on
J0, =c[ x R’ The first such identity is the equation itself

u, =vAu + F. (10)
For the next, differentiate with respect to ¢ to find
u, = vAu, + F, = vA(vAu + F) + F, = (vA)*u + vAF + F,. (11)

Touse (10) note that with F asin Theorem 4, we know that u € C([0, oo[ : H*),
so Aue C([0, cc[: H*"%). If F lies in the same space we conclude that
due C([0, oc[: H*"?).

Similarly, in (11) the first two terms on the right belong to C([0, oc[ : H**).
Thus, if F, belongs to this space we find that

F. e C([0, c[: H*"*)
Fe C([0, c[: H*"?)

Continuing in this manner one derives the regularity of all the time derivatives
of u in terms of the regularity of F.

and }, imply u, € C([0, oc[: H*"¢).

Theorem 5. If for 0<j< N, &FeC([0, c[:H*" %), then C(lue
C([0. c[: H*"%) for0 < j < N. The derivatives satisfy the estimate (12) below.

Proor. The key is an estimate for the derivatives é/u of solutions u e
C*([0. x[: &)

sup IIE,ju(t)II,,.-z,SC}.r.Zj ICXF(o)lge-2,da, j<N. (12
< o

01T

To prove the estimate with j = 1 or 2 use (10), (11) and estimate the right-hand
sides crudely. The general case is similar.

Given (12) one retraces the proof of Theorem 4 using (12) to control the
convergence. O

PROBLEMS

1. Find an explicit formula for the solution of the initial value problem, ¢” + 4v = 0,
£(0) = v’(0) = 0.

2. Show that Lemma 1 in the special case P = D} implies Taylor’s Theorem with
remainder.

3. Give a detailed proof of Theorem S.

4. Formulate and prove analogues of Theorems 3. 4, and 5 for the inhomogeneous
wave equation (Ju = F.




CHAPTER 4
Propagators and x-Space Methods

§4.1. Introduction

This chapter continues the use of the Fourier transform but the point of view
is different. The main estimates in the last chapter werein £ space. This section
concentrates on behavior in x.

One method which works explicitly in the x variables is the energy method.
This technique was applied several times in the last chapter, for example, to
derive L’ estimates for the heat equation. As membership in L? for p # 2 is
not easily read from the Fourier transform, such results are often clearer in
the x variables. For example, the fact that the Schrodinger propagator
F e~ F is not bounded in L” is not obvious in ¢ space but becomes so
upon studying the Gaussians in x space (Problem 3.4.2).

The methods of this chapter are analogous to the latter success. The Fourier
transform is used to derive formulas in x space which are then analyzed.

§4.2. Solution Formulas in x Space

Consider the propagator for the heat equation

FSu)) = 'Ff,  fe SR (1)
Let Ku(t) € (R’) be the function defined by
F(Ky) = 2n) e ¢ F(RY), 2
then (1) is equivalent to

Su(t)f = Ky(t)ef = Ixu(t, x = Y)f(y) dy. 3)
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Happily, K,, is a Gaussian already computed in §2.2,
Ky (1, x) = (drve)~Re 1M, (4)

Thus, for t > 0, S,(r)f is given by the explicit formula

u(t, x) = (4nve)~ 42 J e~ y) dy. (5)

A similar argument for the Schrédinger equation yields
Ss(t)f = K(t) o f. (6)
F (K1) = (2n) ™27 8", (7

In this case, K € &', and the convolution is that between an element of &
and an element of &. K is given by formula (2.4.7)

K(t, x) = (mit) 4/2e~ =18k (8)
It is the same formula as the heat propagator with v = i.
u(t, x) = (4wit)™42 Ie"“"""Y (y) dy. (9)
For the wave equation one has
sin(ct
F SuwlO . ) = Feosterlél) + 9 2. (10)

Define K (t) by

FKy(0)) = (2m)-42 KD

T (1)

then Kw(t) € &' and
u=C(Kw(t)sf)+ Ky(t)eg. (12)

The computation of Ky, for d = 1, 2, 3 is postponed to §4.5-§4.8. For d > 3,
K is not locally integrable. As d increases, Ky, is a distribution of increasing
order.

Formulas (3), (6), and (12) extend to generalized solutions with data f,
g € &(RY). To prove this, choose approximate data f,, g, with support in a
fixed compact set and converging to f, ¢ in H(R) for s « 0. Then consider
the formulas with f, g replaced by f,, g,. For fixed ¢, the left-hand sides
converge in H* [or s very negative (and therefore in #'(R*)) to the generalized
solution at time ¢. Since #'(R‘) « &'(RY) = #'(R*), the right-hand sides con-
verge in &'(R%). Equating the &' limits yields the desired identity.

Taking f = é in (3) and (6), or f = 0, g =, in (12), identifies K, K, and
Kw as the generalized solutions of

(a. -— VA)Ku = 0, K"(O) = 6, (13)
(¢, —iA)Kg = 0, K¢(0) =9, (14)
(= cA)Ky =0, Ky(@=0, 3Ku(0)=3. (15)
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In particular,
Ky € CH{R:H™ " (R") (16)

for any ¢ > 0, which serves to justify the differentiation in (12).

The distributions K are sometimes called fundamental solutions, propaga-
tors, or Green's functions. The representations, (3), (6), (12), sometimes reveal
information which is not obvious from the formulas involving the Founer
transform.

Each of the three equations has a natural scaling property. For example,
u(t, x) satisfies the heat equation if and onlyifu,(t, x) = u(4t, 2x)is a solution
for A > 0. The same scaling works for the Shrédinger equation. For the wave
equation u, = u(it, Ax) is the corresponding transformation. A solution is
called self-similar if for every 2 >0, u; 1s 2 multiple of u. Each of the three
fundamental solutions is self-similar. An equivalent way of expressing this is

the scaling laws
KH(" x) = t-"’zxﬂ(lv %)v (17)
t

K1, x)=t"4%K (l. —'S-), 18
S S \/; ( )
Kylt, X) = t"’Kw(l. "-‘) (19)

The precise versions of the right-hand side use the dilation operator from §2.2
but are harder to read, for example, Ky(t) = t#20,-.aKy(1). These formulas
show that the values of the functions K at t = 1 are sufficient to determine K
everywhere.

PROBLEMS

The next problems introduce you to the propagator for the Airy cquation
Uy + Upyy = 0.

The root of P(t, &) = Ois t = i§ 3 so the Hadamard- Petrowsky condition is satisfied
for forward and backward evolution. The evolution operator is given by the Fourner
multiplier

SA() = FoelF.
1. Use the energy method and the Fourier transform to give two proofs of each of the
following two conservation laws for solutions u € C*(R: &) to Airy's equation
I
u(t, x) dx is independent of 1,

lu(t, x)}* dx is independent of 1.

o

DiscuUssiON. More genesally, S(1) is unitary on H* for all s, .

The fundamental solution, K,(t) = Sp()é has Fourier transform equal to
(2r)" "2 exp(i€®r). For ¢ = 1, K, is a multiple of the special function called the Airy
Sunction, Ai(x).
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2. (1) Find a complex number ¢ such that

d\? . :
(«Tc) AMl+cxAt=0

in the sense of ¥’'(R).
(i) Prove that K, (1) = t~"%g,.,, K, (1).
(iti) Find the scaling law u— u, so that the identity in (ii) expresses the fact that K A

is self-similar,
Discussion. The ordinary differential equation for Ai suggests that Ai is a smooth
function. This is true and all the derivatives of Ai are bounded on R. The general
principle in Problem 3.4.2 suggests that for ¢ 3 0, S, is unbounded on L” for p # 2.
This is correct and as for the Schrodinger equation gives a Fourier multiplier which
is unbounded on L” and is not obviously so.

Self-similar solutions provide many important examples for nonlinear equations,

for example. the rarefaction waves at the end of §1.9.

3. () Find a power z such that if u satisfies the inviscid Burgers equation
u, + (4°), =0, then u, = 4*u(it, 4x) is also a solution.
(1) Find the analogous scaling law u, = 4%u(’1, /x) for the viscous Burgers equa-
tion u, + (1%), = u,,.
Discussion. For linear problems such multiplicative prefactors are inessential. In
the nonlinear case they are essential.

§4.3. Applications of the Heat Propagator

Our first applications rest on the fact that for t > 0
KuDe Z(R’), Kuylt.x)>0, forall >0, xeR,

and

J.Kﬂ(t. X) dx = zn‘lsz"(t. 0) = l. (l)

Young's inequality for convolutions implies that for f € #(R*)and p ¢ (1, ]

ISu()fbe S UKW IS N = WS 1l Ls. (2)

which is an inequality derived by the energy method in §3.6 and applied in
Problem 3.6.1 to generalized solutions with data in L.

In the same vein, the solution formula (4.2.5) extends to general f € L? as
follows.

Theorem L. If pe [1, ] and f € LP(R*). then the solution u = Sy(t)f belongs
to C*(10, c[ x R?). The derivatives are given by the absolutely convergent
integrals

D; ,u(t, x) = J DF . Kyt x = n)findy, ¢>0. (3)
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PROOE. If 1 < p < o, choose f, € #(R) with f, = f in L. Then u, = Suls
converges to u in C([0, oo : L?(R’)). In particular, 4, converges 1o u in
@' (10, oof x R%). For p = o0, the convergence of f, is taken in the weak-star
topology. Then u, converges to u uniformly on compact sets in }0, oo x R
and therefore in 2'(}0, o[ x R9).

The solutions u, are smooth with

Dj ,u,(t, x) = I(meu)(t. x — Wu(y)dy.

For any ¢ > 0, the functions D} . Ky(t, ‘) are uniformly bounded in LY(R*) for
t>cwherel/g+ 1/p=1.
Holder's inequality shows that the right-hand side converges uniformly to
the right-hand side of (3), which is therefore bounded and continuousont? 2 &.
- The left-hand side converges in 2’(¢ > 0) to Df .u, which proves the desired
result. O

In §3.6, the operator S,(t) was extended so that Su(t)fis well defined if f € H*
forsomes € R, or if f € L? for some p € [1, «]. For f € &', we say that f >0
if for all @ € & with ¢ 2 0, {f. ¢) = 0. For [ € L, this is equivalent to f20
a.c. For f € & it implies that f is a nonnegative Radon measure.

Theorem 2. Suppose that f € H*(R*) for some s or that f € L?(R%) for some
pe[l, ). If f 20, then forallt = 0, Su(t)f 2 0.

Proor. Let j, 2 0 and yx, be the usual nonnegative moliifiers and plateau
functions. Then

fi=iev N 20,
and forpe ¥, ¢ 20,

Su(t)f, 0> = !‘:‘; (Su() S @)

This follows since Syu(t)f, = Su(t)f in H* orin L.

Now Sy(0)/; = Kn(t)ef, 2 0since Ky € ¥ and f; € CZ are nonnegative, SO
the convolution is equal to an integral with nonnegative integrand.

It follows that the limit in nonnegative. O

Corollary 3 (Comparison Theorem). If X = H*R’), se R or X = L°(RY),
pe(l, o), and f, g € X with f 2 g, then Sy(t)f 2 Su(t)g.

PROOF. Sy(t)(f — g) 2 0 by Theorem 2. O

For f € L® we may take g to be the constant function ess inf( /) for which
Suft)g is independent of ¢, x. Similarly, ess sup(f) is an upper bound for u.
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Corollary 4. If fe L°(R*) and u = S,,(t)f, then forallt > 0
ess inf(u(0)) < u(r) < ess sup(u(0)). (4)

Thus the temperature is always between its initial extremes, consistent with
the intuition that heat flows from hot to cold.

An alternate derivation of the corollary goes as follows. Let W(s) =
(max(s — M, 0)]*. Then ¥ is C? and convex, so by the energy method
(Theorem 3.6.4), | W(u(¢, x)) dx is a nonincreasing function of ¢. If f € & and
f < M. this proves that u < M for all ¢ > 0. Approximating a bounded f by
clements f, € & with f, < ess sup f yields an independent proof.

Next we examine the large time behavior of u = §,,(t)f when f € L*. Recall
that the L' norm of nonnegative solutions is the physical energy. We have

Ju(t, x)| =

IK u(t, x — ¥ f(y)dy

< NKu(eM e 1Sl
= (4nvt)" || fil ..

Thus finite energy solutions decay uniformly as 142, the same rate of decay

as Gaussian solutions. More generally, we have a sharp rate of decay for the
L? normforany 1 < p < x.

Theorem . If fe L'(R), pe [1, =], 1/q + 1/p = 1, and u(t) = S,,(1)f, then
"“(t)”u' < (47:"‘)-"2‘ "f“um‘)- (5)

PROOF. For p = 1, (4) expresses the decrease of the L! norm proved in (2) and
by the energy method in §3.6. The estimate for p = oc was proved immediately
before the statement of the theorem. The Riesz-Thorin Theorem completes
the proof. O

The behavior as t — oc can be described even more precisely if f decays
sufficiently rapidly as |x| — co. For this, the argument is simpler using the
Fourier transform, where ii(t, £) = e *’f(¢) decays exponentially fast as
t — oc, except at the origin, £ = 0. This suggests replacing fbya Taylor
expansionat & =0

J20)$*

0= e "N
sy a!

+ Ru(t, &)

The case N = Qs the most interesting,

i = f(0)e ™" + e~V (f(¢) — f(0).
Taking the inverse Fourier transform yields

u = QY (0)Ku(t) + F (¢S - o). ©)
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To estimate the last term note that

17€) = SON < 121UV S lLary < QR)™2 11X N Lragy,

the last estimate following from V,f = #(ixf). The L(R?) norm of the
second term in (6) is therefore dominated by

e " RP(f ~ f (Ol ny < 2r)" 2 |\ xf Ilz.smg;llﬁe""‘"\lz,n(n‘s-
Compute the L' norm on the right using polar coordinates

Iléle"’"‘" i =w, I re""r! dr.

The change of variable p = (vt)'?r yields

E o

= @, (v)” 1+ J ple " dp = c(ve) 4+ 12 0
0

This proves the following theorem.

Theorem 6. If (x)f € L'(RY) and u = Sy(1)f, then there is a ¢ = c(d) such that

fort>0
l u(t) ~ (jf (x) dx) Ku(t)

Note that the error on the right decays faster, by a factor ¢~*2, than the
solution itself. We known that the energy, {u(t, x) dx, is independent of time.
The above theorem shows that for ¢ large u is close to the Gaussian with the
same energy. For large time, solutions with the same initial energy are essen-
tially indistinguishable. Thus for ¢ large, there is only one observable, the
energy. '

This is a rather striking degradation of information. For example, one could
code the Encyclopaedia Britannica as a sequence of 0's and 1's and encode that
as a step function

L=(RY)

1 0 0 i 0

Then asymptotically, all one could measure is the number of bits of informa-
tion rather than the information itself. This is a strongly irreversible process.
Time’s arrow is clearly visible.

Our next observations concern the smoothing property of the solution
operator Sy. Theorem 1 shows that in the C* categories the solutions are

immediately smoothed. Looking in Fourier we sill show that the same is true
for H* regularity. Write

a(t) = e”*RV).
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If fe H°(R?) for some o € R and s is any real number, perhaps much larger
than g, then

CEYH(E) = ({EY(EY %~ ") (&),

The last factor belongs to L* (Rf) and the first factor is uniformly bounded
on [n, o[ x R{ for any n > 0. Thus u(t) € H* and

lu@lye < cls = . DS Nye
¢(r, 1) = max {EYe ",
Je R

This is used together with the estimate
“atja:“(t)"z." = II(?:(\'A)ju(l)ﬂL, < cllu(@)] yzreareace

to prove the following theorem.

Theorem 7. If fe H'(RY) for some ¢ and u = S, f, then for any s. ue
C=(]0. <[ : H*(R%)) and for any j,x, and n > O, there is a ¢ > 0 so that for all
t2n

1S/ ponar < cls = 0. LS leecrar

This regulanzing illustrates again the degradation of information and non-
reversability in heat propagation.

Actually, much more is true than that u € C*. Using the propagator K, we
show that u is real analytic.

Theorem 8. If f € LP(R%) for some 1| < p < occ and u = Sy(t)f. then u(t, x) €
C*(J0, oo[ x RY). In fact, uis the restriction to ]0, oc[ x R4 of the holomorphic
function u(t, {) on {Re(t) > 0} x C" from (8) below.

PROOF. Let
unl) = (4m)l,f TR "'"fmdv (8)

Since Re(t) > 0, the integrand decays exponentially as|y| — oc, uniformty for
t, { in compact subsets of {Re(r) > 0} x C". The square root in the prefactor
is the branch, in Re(t) > 0, which is real for t positive and real.

That (8) defines a holomorphic function is verified by differentiation under
the integral sign (justify!). This shows that u satisfies the Cauchy-Riemann
equations in 7, { since the integrand does.

Theorem 1 shows that (8) is an extension of u(t, x). 0

The same conclusion is valid if fe H*(R?) for s < 0, even if f is not locally
integrable so the formula using integration is not valid.
Instead, observe that the function exp(— ) ({; — y))*/4vt) € S(RY), so if
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¢ , ) denotes the pairing of ¥ and & we can define u(z, {) by

1 Z(Cj }’1)
u(r.{) = ~ (dnvi)i? <f p( dvt )> ®)

In Problem 4, you are asked to prove that this is holomorphic. This suffices
to extend Theorem 8 to H* data. These arguments also show that S extends
naturally to %’ and that the conclusion is valid for any data from .

Corollary 9. If u = Sy(1)f and there is a t > 0 and an open set w = R so that
u(t, x) =0 for xe w, thenu = 0.

PROOF. u is smooth in {t > 0} x R?and &/¢u = é3(vAYuvanishes on {1t} x w.
The unique continuation property for holomorphic functions implies that
u(t, {) is identically zero on {Re(z) > 0} x C*. O

In general, u will not be real analytic att = 0. In order that u be real analytic
at (0, x), anecessary condition is that f be real analytic at x. In §1.3 we observed
that this condition is not sufficient, since the time derivatives of u of order k
grow like the space derivatives of order 2k. The result is that the regularity
in ¢, for real analytic f, is described by the Gevrey class G2 defined in [H2,
p. 281].

As a final application, consider the decay of the derivatives of Sy(t)f as
t — . The formula d(t) = exp(—vt|¢)?)f shows that the high frequencies
decay faster than the low frequencies. This suggests that derivatives of u may
decay faster than u itself.

The rate of decay of the L? norm of derivatives of order k is estimated as
follows:

IDZu(D)l = e s < (sqp lél"e"""’) T

The change of variable, n = (vt)'3¢, shows that

[
- 212 -pnd ck

sup |&]te™" = sup " = .

e Re ne Re (W)Mz

o
Thus, if la| = k
IDZully: < ()™ £l o

Note that the higher the order of the dernivative is, the faster the decay is.

For estimates based on the energy, || f|l.:, and for sharp rates of decay in
L? for p other than 2 (e.g, L™) use the fundamental solution K,,. For f € L'
and ¢ > 0, the derivatives of u = Sy(t)f are given by

Diu = (D;Ky(/N+f.
Fort > 0, D;Ky(t) e &, and
DUl s < IDZKI S Nps-
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Lemma 10. | D2K (Ol rirey = (a, p/t™* 49 where 1/p + 1/q = 1.
The lemma implies the basic estimate for the decay of derivatives.

Theorem 11. For a € N® and p € [|, o], there is a constant ¢ such that for all
t >0and fe L'(RY)

o
WD*Su()f N < fGarsaians (AT

ProOF OF LemMaA 10. Differentiating K = (4nve)"42e™*** yields &;K =
(x;/2vt)K. Continuing, we see that &K is a linear combination of terms of the
form (x%/tY)K.

More precisely, notice that when one differentiates (x?/t*)K, if the derivative
falls on K, then |7| increases by 1 and |k| also increases by 1. If the derivative
falls on x”, then |y| decreases by 1 and k remains the same. In both cases,
2k — || increases by 1. Thus ¢2K is a linear combination of terms (x®/¢"YK
with 21 — | 8] = |al.

Write such terms in the form

GGy

The change of variables y = x,(4vt)"? in the integral for lx?/eHYK |If, yields
the desired result. O

PROBLEMS

1. Prove that if f& L*(R*)is uniformly continuous on R?, then u = Sy(1)f is uniformly
continuous on [0, x[ x RS.

Discussion. This is a good addition to the information in Problem 3.6.2.

t

For fe L'(RY) and p>r, find the rate of decay as ¢ tends to infinity of
1Su(0)f il Lorey/ 1S | -cmey. Hints. Start with the inequality Su(0)filine < WS Ne»-

Then derive ISu(0f | Loire < 1Ku(0)le 1S 1,. Finally, compute ! Ky(f)'l and use
interpolation.

3. If (x)¥f e L*, use the degree one Taylor polynomial of Ff at 0 to compute the
asymptotic behavior of Su(t)f as ¢ tends to infinity up to errors

O((ve) 4221 ).

Find a statement analogous to that of Theorem 6 in the sense that the principal
terms and error estimate are given by simple expressions involving f(x).

4. Show that for any fe &'(R*), the function u(z. {) defined on {Re(r) > 0} x C*by

u(t, {) = (dave) V2, e TKamraiey
is holomorphic.

$. In analogy with Problem 2, estimate the rate of decay as ¢ — oo of 1S Su(t)f il for
feL andp>r21l.

6. Prove that if fe L?(R?) with p > 1, then lim,_, §Su(0)f 1., —O.
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§4.4. Applications of the Schrodinger Propagator

The solution formula for the Schrédinger equation is

u(t, x) = (4mit)™*? J. e~ TS y) dy. (1

Note that conservation of the L? norm is anything but obvious from this
expression. Even boundedness in L? is not clear.

Our first estimate relies on the fact that | K¢(t)l| . = |4mt|™*?, the same as
the L™ norm of the heat propagator.

Theorem 1. If fe L' (R*) and u(t) = Ss(t)f, then forall te R
hu(ze < 142|792 ju(O)ll.. (P4
Though this is the same rate of pointwise decay as the heat equation, other

L? norms behave differently. For example, the L? norm is conserved for the

Schrodinger equation and decays for the heat equation as in Theorem 4.3.5
and Problem 4.3.6.

Corollary 2. If fe LY(R%), 1 < ¢ <2, 1/p+ 1/q = |, and u = S5 [, then
Nu(e)l, < |dne| 412122 |y Q)] .. )

ProoF. Interpolate between the cases g = 1 and 2. O

Corollary 3. If fe L3(R®), u(t) = Ss(t)f, and Q < R* has finite Lebesgue mea-
sure, then

lim Prob(x € 2) = 0.
§—~®

PROOF. Given ¢ > 0 choose p € &, ll@¢ — fll: < ¢ Then
1n i 2
U 1SsS1? dx) < (j 1Ss/12 dx) + (J’ |Ss(e ~ 12 dx)
) o o
< 0()eI™*?) + ¢ 0
A better idea of the behavior as t — a0 comes from expanding the exponent
in
R P S L

For f of compact support, ¢~ is close to 1 on supp(/f) and

J’f"”"f(Y) dy = (2ny*?f(x/21).
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This suggests that
= Ixl24it

FWf = Wf(x/zz) @)
is an approximation to u = Sg(t)f.

Theorem 4. For fe L*(R‘) and u(t) = Ss(t)f we have

. ~isisic /o i
:'l-r.!l ule) = Wj(i;) I L3(RY) =0 Gl

Note that e ***¥ js of modulus 1, so the relative probability of being at 1, x
is approximately proportional to f(r/2t) which is consistent with the inter-
pretation of | f|> as a momentum density if we recognize that m = 1 for our
equation.

The asymptotics (5) give a physical intuition into the decay rates for the L’
norms. If the momentum density decays rapidly at infinity, then the solution
u is concentrated over a regions which dilates linearly with time, so has volume
growing like |t]%. The amplitude decays like |¢t|~*?, which is to be expected
given conservation of the L? norm and is verified in formulas (2) and (5).
Amplitude 1™ over a region of size ¢4 yields the rates of decay (3). Exactly
such spread is present in the explicit Gaussian solutions computed in §3.3.

PrOOF OF THEOREM 4. Since e~ 4% j5 of modulus 1, the change of variable
¢ = x/2t shows that | L()llp2~.2 = 1 forall ¢ # 0.
For fe L}(R*)and anye > 0,choose g € CE(R*) with |lg — f1l.: < &. Then

L(1)g = S(t)(e*"™g(y))
= S(t)g + S(e)((e*U" — 1)g).
Now [l(e™"*# — 1)g}, = O(1/|t}). Thus
IS()f — L@Of e < 15()g — L @)gllea + USE)(S = gz + 1L O = 9l

(Ill) +

Thus
li!:l sup (S(t) = L)1 < 2,
| =c0
and the proof is complete. 0

Corollary 5 (Dollard). If fe L? I" c R is a measurable cone, and u(t) = Ss(1)f,
then

lim I lu(e, x)I? dx =I | /(&) de.
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Proor. Foranyt >0

J (LS dx = J LfE)° de.
r r
Then since
j lu(t, x) = L(O)f1> dx -0
Ly

as t — o, the proof is complete. O

This corollary shows that for large positive time the probability that a
particle lies in I’ converges to the probability that its momentum liesin I
Similarly, the probability that a particle lies in — T for large negative time
converges to the probability that the momentum lies in I'. The fact that these
two probabilities are equal shows that there is no change in direction of
motion in the scattering of particles by the Schrodinger equation.

Dispersive phenomena like those for Schrédinger’s equation can also be
studied directly from the Fourier representation. From that point of view, one
is lead to oscillatory integrals which are estimated using integration by parts
in what is called the method of (non)stationary phase. Consider the solution
with data fe CF(RY)

u(t, x) = (2m)™** je“‘e"""’f(é) di = (2m)™47 [ e'*f(¢) i,

with phase ¢ = x¢ — t|¢[*. Where V. # 0, the integral is oscillating and one
expects cancellation, so a special role is played by the points where V.
vanishes. These are the points of stationary phase and are given by x = 2¢r.
Thus the values of f near & are expected to play an important role where
x/t = 2Z, that is, the points observed by an observer moving with velocity 2¢.
Note that this is the group velocity at frequency & encountered in Example 2
of §3.4. Theorem 4 is a precise result capturing part of this idea. Using the
method of nonstationary phase, we will show that if f vanishes on a neighbor-
hood of , then an observer moving with speed 2 will make observations
decaying faster than any power of /¢ as ¢ — oc.

Theorem 6. Suppose that f€ #(R*)and A < R satisfies § = dist(A, supp f) > 0.
Then for any n € N, u(t, x) = O((¢t + |x[)™")ast — o in the set {(t, x): x/t € A}.

ProoF. For such x, ¢ and ¢ € supp f, IV,¥| = 12§ — x/t{t 2 t6. Let L be the
differential operator
< OY/04; 0
Ls —-i) =35
) \A'T S
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which satisfies the crucialidentity Le** = e'¥. Thenintegratior. by parts yields
u = (2n)™97 J‘L'(e“)f d¢ = (2n)~4? j'e“(L')"fdf,

where L’ is the transpose of L (L' might lead to confusion with the time variable
t). The proof is completed by showing that for x/t € A and ¢ € supp f

(LY =) a.x. )@ and  a|<cle+|x))" (6)
ast - xin {(1, x): xt € A} (Problem 1). O

PROBLEMS
1. Complete the proof of Theorem 6.

2. Prove Corollary 1 without using the explicit formula (1) but starting from Theorem
6 instead.

3. Provethatif fe H*(R) has compact support, thenu = S¢(1)f belongs to C=({t # 0}).
DiscussioN. This is an example of dispersive smoothing. The fact that different
frequencies correspond to distinct velocities “tears apart™ singularities of compactly
supported data.

Consider the solution of Airy's equation u, + u,,, = 0 (sec the problems in §4.2)

u(t, x) = (2n)~'? J.e""“"f(s‘) di = (2m)"'2 Ie"f(f) ds (N

with phase ¢ = x¢ + 1£>. The points of stationary phase satisfy x/t = — 3¢ < 0. This
suggests that the frequency { is associated with the group velocity equal to — 3¢2. Since
all these velocities are nonpositive there is a phenomenon of one-way propagation.
Prove the following precise version.

4. Theorem. Suppose that f € S(R*) and u is the solution (7) of Airy’s equation with
u(0, ) = f(-). Then for any € > 0 and n > 0, u(t, x) = O((t + Ix{)™®) as t — o in the
region {(1, x): x/t 2 ¢}.

Discussion. The Schrodinger equation has exponential solutions "%~ %" with
@(§) = }¢)2. The surfaces of constant phase of such an exponential move with speed
w(s), called the phase velocity. The Airy equation has w(E) = — &3, The initial value
problem is solved by

u(t, x) = (2r)~42 I eSO dE, 0= xE— wlEh

Points of stationary phase satisfy x/t = V,w. Such real-valued w are called dispersion
relations. The velocity V,w giving the points of stationary phase is called the group
velocity at frequency {. There are formulas analogous 1o (5) asserting that for 1 large
ult, x) is approximately equal to mit, £)f(Z), where the group velocity at ¢ is equal
to x/t and the factor m is determined by the method of stationary phase (see
[(Whitham]).
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§4.5. The Wave Equation Propagator for d = 1

Recall that the solution of
Ou=0  u0-)=/ 40-)=g 1)
is given by
u(t) = Kw(t)o g + (B Kw(0) +/, 2
where

ct)él)
clél ’

#KyeCR:H*')),  forall s< -df2
When d = 1, the fact that (sin x)/x = sin |x|/|x| yields

F(Kn(t)) = (2m-n 221D

-— e-‘“‘

2i

fetd
2 F (Kw(t)) = 1) sin ct¢ = (2r)~*2 2

5. — b,
2c

Happily, there is a simple distribution whose derivative is equal to the right-
hand side. Note that d_h(x — a) = J,, take a = +ct and subtract to find
OxXi-ct.ct) = O-x — 0. For ¢ fixed, this shows that K — z/2¢ has distribution
derivative equal to zero, so must be independent of x,

| |
Kw(‘) - 2—c' xl"“-“l = constant(‘).

axKW(‘) =

However, Plancherel’s Theorem shows that the left-hand side is in L3(R,) so
the constant must vanish and we have

Kw(t) = X|-¢. a) when d=1 (3)
Then, for ¢ € #(R,),
-<Kw( ), @) = 21c @ dx = ¢(ct) +2¢(-ct) _ +26,,, (p).
Thus formula (2) becomes
u(t, x) = Jix —c1) ;.f(x + <) + 2‘—-‘: . g dx, @)

which is D’Alembert’s formula. An independent proof was given in §1.8 where
a variety of consequences were analyzed. The reader is invited to give the
gencralizations made possible by using the language of Distribution Theory.
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In particular, the results on dornains of determinacy and domains of de-
pendence are true when the data f, g belong to H*(RY) x H*"'(R?) for some s.

PROBLEM

1. Find the propagator K for the equation Cu + cc,u = 0, c € R, by Fourier transform
techniques.

The next problems use D'Alembert’s formula to study the reflection of waves at a
boundary. Examples modeled by differential equations in x > 0. supplemented by
boundary conditions at x = 0, are a semi-infinite string fixed at one end (the boundary
condition ts u(t, 0) = 0) or frec at onc end (u,(r. 0) = 0), and acoustic waves in a
semi-infinite narrow pipe closed at one end (u,(t, 0) = 0, where u is the pressure).

Suppose that in the half-space x > 0, waves satisfy

Uy —c2u,, =0 for teR and x>0. (5)
Suppose that for t < 0, u represents a wave approaching the boundary, that is,
fort <0, u=@(x+ct) with ¢ e C5(]0, x<[). (6)

2. (i) Find a function u(t, x) € C*(R, x [0, xc[) satisfying (5), (6) and the boundary
condition u(t, 0) = 0 for ¢t € R. Hint. Look for u as in forrula (1.8.3).
(i) Solve the same problem with boundary condstion u.(t, 0) = 0.
Discussion. The solution u is uniquely determined by these conditions. This is
proved, as in Problem 3.7.1, with integration by parts over I' n {x 2 0}. Because of
the boundary conditions, the {x = 0} boundary terms from integration by parts
vanish. See also Problem 5.7.5.
Theterm §(x — ct)iscalled the reflected ware. For reasons which should be clear

from the answers, the reflection coefficient is equal to one for the boundary condition
u, = 0 and equal to minus oae for the condition u = 0.

§4.6. Rotation-Invariant Smooth Solutions
Of Dl+3u - O

The strategy for computing Ky(t) when d = 3 is to approximate by the
solutions to

Qu, =0, u;(o’ ') =0, atuc(ov ) =Jj.(h (1)

where j, is a rotation-invariant smooth approximant to 4. Such a u, is smooth
and rotation-invariant. Since j, — é in H™42"*(R¢) for any ¢ > 0, it follows that
u,— Ky in C(R: H! ™42,

When d = 3, explicit formulas for spherically symmetric solutions allow a
painless passage to the limite — 0.

Definition. If u € C*(R*) and A4 € GL(R®), then u, € C*(R’) is defined by
u,(x) = u(A™'x). The function u is called A invariant if and oaly if u, = u.
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The definition of u, asserts that the value of u, at Ax is equal to the value
of u at x.

Definition. A mapping P: CZ(R‘) = C=(R?) is called 4 invariant if and only
if for al u € Cg’, P(u,) = (Pu),.

ExAMPLE. Problem 2.2.3 asked you to show that #: (RY) - L(RY) is A
invanant if and only if A is orthogonal.

Proposition 1. If P = P(D) is a constant coefficient partial differential operator,
the following are equitalent:

(1) P(D) is A incariant.
(n) P(S) is A' incariant.
(iii) P(C) =Y P(E), P, homogeneous of degree j, and each P(¢) is A' invariant.

PrOOF. The equivalence (ii) = (iii) is immediate. .
To prove (i) < (i1), take u = ¢'** and compute
P(u,) = p(D)el'(x.(A")‘~!> = P((A-l )c:)ei(x.(/l")%)’
(P“)A = (P((.)ei“'g)).c = P(f)ei(x'“-"'v-

That (i) = (ii) follows immediately.
On the other hand, if (i) holds, then P(u,) = (Pu), holds for u = e**.
For ue £(R’) the identity then follows by superposition upon writing u =

fei=u() déf2my2. .
ExaMmpLES. 1. 4 € GL(RY)is orthogonal if and only if A is 4 invariant.

2. Le GL(R'**)is a Lorentz transformation (e.g. preserves the bilinear form
c2t — |x|®)if and only if (J is L invariant.

3. No nonzero first-order scalar operator, ) g,é;, is orthogonal invariant.

Next weextend the map & s u > u, € . Toshow that A extends uniquely

to &’ we use Proposition 24.4. For Te &', (A'T, @) = (T, A¢p) forallp € &.
Thus, if Te &,

(AT, @) = J. T(x)p(A™'x) dx.
Make the change of variable, y = A7'x, dx = |det(4)| dy, to find
(AT p) = IT(A}’)Idet(A)lfp(y) dy,
whence A'T = |det(A4)| T ,-, belongs to &. Thus A extends, and for any U € &,

0EY,
(AU, @) = (U, Np) = (U, |det(A)|9,-1 ).
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ExAMPLES. 1. 8, = |det(A4)}4, so & is A invariant if and only if |det(4)| = 1.
For proof, compute

(04, ) = (6, |det(A)| @4~ ) = |det(A)l@,-(0) = |det(A)le(0).
2. If A is orthogonal on R¢ and if u satisfies (4.5.1), then u,, satisfies

Ou,=0, u0)=f, u(0)=g,

In particular, if f, =f and g, =g, then u, =u. Thus if f, ge ) H* are
rotation-invariant, then the solution to (4.5.1) is rotation-invariant. Thus

(Kw()).. = Kw(t) for all orthogonal A.

Similarly, the approximations u* defined in (1) are rotation-invariant when-
ever j, is. Thus u® is a smooth rotation-invariant solution to (Ju = 0.

If w(x) is a smooth rotation-invariant function, then w(x) depends only
on r = |x} = 0. Thus w(x) = W(ix|) = W(r), We C*(]0, o). Since W(r) =
w(r.0,0,...,0), it follows that W extends uniquely to a smooth even function
of r € R. Thus, the map w(r,0, ..., 0) = W(r) establishes a one-to-one corre-
spondence between the smooth rotation-invariant functions on R and the
smooth even functions on R. This identification is usually taken for granted
and we write w = w(r) and abuse notation by writing ,w or w,.

For r > 0 and w rotationally symmetric

Aw = '%é,(r"‘a,w) = W, + é—;—l w,. (2)

When d = 3, multiplication by r yields
rAw = rw,, + 2w, = (rw),, when d =3.

Thus, if « is a smooth rotation-invariant solution of (J,.;u =0, then
v = ru(t, r) satisfies v, — ¢?v,, =0 for r = 0. Since the left-hand side is a
smooth odd function of r the equation holds on all of R, x R,. Thus v is a
smooth odd solution of the one-dimensional wave equation.

Conversely, if v is a smooth odd solution of O, ,,v = 0, then

o(e, 1x1)1x| if x#0,
v,(t, 0) if x=0,

is a smooth spherically symmetric solution of [J,,,4 = 0. That u solves the
wave equation in x # Ois a simple calculation. On the other hand, u is smooth
on R!*3 so Ou is a smooth function vanishing on x # 0 and therefore
identically zero. This proves the following proposition.

u(t, x) = { (3)

Proposition 2. The correspondence v(t, r) = ru(t, r) defines a one-to-one corre-
spondence between smooth rotationally symmetric solutionsuto (1, . 3u = Oand
smooth odd solutions to (3, ,,v = 0.
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The most general such v is easily described. First, it must be a solution of
0,+:v = 0 whence

v=¢ct + x) + Y(ct — x), o, ¥ € C*(R).
Since v is odd, v must be equal to the odd part of the right-hand side

v=[plct + x) — @(ct — x)] + [Y(ct — x) — ¥lct + x)].
Let F = ¢ — ¥, then
v= F(ct + x) — F(ct — x). 4)
Conversely, for every F € C*(R), (3) defines a smooth odd solution. Note that

adding a constant to F does not change the value of the right-hand side. The
function v is determined by F in the equivalence class of F in C*(R)/R.

Proposition 3. The map F s v given by (4) defines a one-to-one correspondence
between C*(R)/R and the smooth odd solutions of (J,,,v = 0.

PRrOOF. It remains to show that the map is injective. Equivalently, it suffices
to show that if v defined by (4) vanishes, then F must be constant. If v vanishes,

differentiate (4) with respect to x and set x = 0 to find that F' = 0, whence F
is constant. O

Combining the last two results yields the main result of this section.

Theorem 4. The map Fr+—u
F(ct + |x|) — F(ct - le)‘ x40,
u(t, x) = Ix| (5)
2F'(c1), x=0,

defines a one-to-one correspondence between C®(R)/R and the rotation-
invariant smooth solutions to (1, ., u = 0.

The rotationally symmetric solutions of the theorem are key examples in
forming an intuition into the behavior of multi-dimensional wave equations.

As a first example, consider the behavior of smooth radial solutions
with Cauchy data supported in the ball |x}| < p. Let f(r) = ru(0,7) and
g(r) = ru,(0, r), both smooth odd functions of ». The Cauchy data for u defined
by (5) yield the equations

Fr)- F(-n=f(" and F()-F(~r)= 9(6’)

Diflerentiating the first with respect to r and adding yields F' = f' + g/c. As
F is only determined up to a constant, we may take

F(r) = j ro+ 8y
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Since g is odd and f has compact support the integral vanishes for r > p. Thus
F is supported in [ —p, p].

Consider formula (5) with r > 0. For ¢t large,ct + r> p, 50 F(ct + r) = 0.
Then u(t, r) = — F(ct — r)/r is an outgoing spherical wave with profile — F/r.
In particular, it decays like ¢~*.

In the distant past,ct — r < —pso F(ct —r) =0.Then u(t, r) = F(ct + r)/r
is an incoming spherical wave with cross section like F/r. The big picture is
an incoming sperical wave which emerges as an outgoing sperical wave with
profile changed only by a factor of —I.

Finally, notice that u vanishes unless at least one of ct + |x| belongs to
[ -p, p]. The set of such ¢, |x| is sketched in Figure 4.6.1. For the support of
u. this yields :
supp u < {(t, x): —p < x| —clt] < p}. (6)

For ¢ > 0 this is the region between the two light cones |x| —ct = 1 p
sketched in Figure 4.6.2.

The derivative F’ in formula (5) causes an interesting loss of regularity in the
classical C* spaces. If F € C§(R) with k > 3 and F vanishes on a neighborhood
of the origin, then the corresponding solution is C*"!(R"*?) because of the
derivative F’ in (5). On the other hand, the Cauchy data satisfy u(0) e C*,

t
\
/ —psct-Ixt<p
P
> X
5 {x|
)
—pscle x| <p

Figure 4.6.1
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(-p.0,0)

Figure 4.6.2. The support of u is between the two light cones

u,(0) € C*~!, that is, the Cauchy data have the natural regularity for a solution
of class C*. In the C* category there is a loss of one derivative. In the spaces
H* there was no such loss. The loss of regularity in the C* category is due to
focusing.

A bound on the number of continuous derivatives which may be lost in
dimension d can be found as follows. If the data lie in C§ x C3~*, then they
lic in H* x H*™'. Then Theorem 3.7.2 implies that é/u € C(R: H*“/(R*)). The
Sobolev Lemma implies that u € C*(R!**) provided m < k — d/2. Thus there
is a loss of no more than d/2 + & derivatives. This indicates that we might
expect more loss as d increases and that is the case. The rule of thumb is
one-half of a derivative per space dimension.

For F € C®,the presence of the derivative in (5) causes no loss of regularity
but is felt in the phenomenon of amplification due to focusing. A wave initially
supported away from the origin will have amplitudes of size F’ at later times
and F’ may be much larger than sup(F|. This can happen even if the initial
data for ¢,u vanish. Thus, measured in sup norm the map from data at time
zero to data at time ¢ is not continuous. This discontinuous dependence and

the loss of derivatives are two aspects of the same physical phenomenon. The
theme is discussed again in Problem 4.7.1.

PROBLEMS

The next problems consider rotationally symmetric solutions of the Laplace equation.
1. Find all rotationally symmetric smooth harmonic functions on R*\{0}.

2. In Problem 2.5.5 you showed that when d = 3, (a* — A)(e™*/r) = c(a)d. Compute
A(1/r) by passing to the limita —» 0.
Discussion. Problems 3 and 5.10.3 give independent proofs.

From Problem 1 you know that for d > 3, r~¢ is harmonic on RA\Q. Since r2~is
locally integrable at follows that A(r?¢) is a well-defined distribution with support at
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the origin. Therefore there are constants ¢, such that
A(r*) =Y c,2% a finite sum. (7

3. () Provethatc, = Oifa # 0. Hint. Apply identity (7) to the test function y(4x) and
consider the dependence on 4.
(i) Evaluate ¢, by applying (7) to an appropriate test function in & (R?).
Discussion. The distribution 2~ is homogeneous of degree 2 — d. It follows that
A(r?~?) is homogeneous of degree —d. The hint in (i) amounts to showing that the
only way that the right-hand side can be homogeneous of degree ~disifallc, = 0
for x # 0.

§4.7. The Wave Equation Propagator ford = 3

To compute the solution K, to
Dl#JK =0, K(o’ )=0, 6,1((0, ')=6o (l)
we analyze the limit ¢ =0 in (4.6.1) where

jeCexl<1), j=20 I}' dx=1, j.= t"j(z), 2)

and j is rotationally symmetric. Since j, = in H*(RY) for all s < —d/2, we
have for any ¢

H*-lim u,(t) = K (t). (3)

In particular, u,(t) = Ky(f) in &'(RY). The results of the last section yicld
explicit formulas for 4, and thereby an evaluation of the limit.
By Theorem 4.64, there is an F, e C®(R) with

(Flct + 1) = Ffct —=n)r, r=|x|#0,

blty x) = {2F,’(ct), r=|xl=0, “

Setting t = 0 yields F,(r) — F(—r) = 0, so F, is an even function of r. Com-
puting d,u,(0, -) yields

ﬁ=%?. (5)

Note that any solution of (5) is automatically even in r since rj,(7) is odd. F is
only determined modulo an additive constant, so we may take

Fir) = L " ar. ©

To compute lim y, the following properties are important:
supp &, < {(t, x): clt] — e <|x| < clt| + ¢}, Y]
(sgn t)u,(t, x) 2 0, ®)
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and

Iu,(t, x)dx = 1. ‘ (9)

PROOFS. Property (7) follows from formula (4.6.6).
To prove (8), note that for ¢ > 0 and x ¢ R

|xju (2, x) = Flct + r)— Ffct —r) = J‘ ) dr.

a-r 2€
If ¢t — r > 0, this is nonnegative since j > 0. If ¢t — r < 0, the integral from
ct — rtor — ct vanishes so

f"'ﬂrj‘(r)
= [0z
‘e 2

This proves (8) for ¢t > 0. The solution of (4.6.1) is odd in ¢ since —u(—¢, x)
solves the same initial value problem, so (8) for t < O follows from the case
t>0.

For (9) note that since 4, is smooth and supported in |x] < c|t] + ¢, differ-
entiation under the integral sign is justified to give

ol J.u,(t, x)dx = J-é,’ u,(t, x)dx = J'C’A,u, dx.

The last equality uses the equation (Ju = 0. Integrating by parts shows that
the last integral vanishes. Thus, [u, dx = at + b with g, b € C. Evaluating at
t = 0 yields b = 0. Differentiating with respect to time yields a = § du, dx.
Evaluating this at ¢t = 0 shows that g = 1. 0O

We now compute the &'(R?) limit of the u,(¢). For ¢ € #(R3), use polar
coordinates to write, for ¢ > 0,

Cug(e) ¢ = I I ) ut, N (ro)r® dr do.
st Jjo

Here dw is the element of surface area on the unit sphere S2. Now u, vanishes
if r is more that ¢ units form ct. This suggests writing

W ()¢ = J- ” u,(t, Y (ctw)r? dr dw + error,

4853 JO

P
error = I u L, (W (rw) — Y(ctw) )r? dr dw.

In the support of u,, Irw — ctw| < ¢, so

lerror] < eV, ¥liz. j' '“cl'z drdw = eVl Iuc dx = 3'vx¢“l.°t‘
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The integral with y(ctw) is computed explicitly using Fubini's Theorem

[ J-n u (t, Y (ctw)r? dr dw = J.r u,(t. ryr* dr j. Y(ctw)dw. (10)
s Jo 0 s?

The last term is the integral of ¢ over the surface of the sphere of radius ct, on
which the element of surface area is given by do = (ct)? dw. The integral of u,

in (10) is equal to t/4x. since it is equal to (42)™" times the integral of u over
R*. Thus

{
(ut) ¢ = 4:—n ay Ll’ ‘lll de + O(e).

This completes the proof of the following important formula when t > 0.

Theorem 1. Ford =3 andt #0
Ku(t) =

Inct d0ye:x - (1)

ProOF. We have just proved the identity for ¢t > 0. It follows for t < 0 since
both sides are odd functions of ¢. 0O

Formula (4.2.6) shows that for f, g € ¥(R?). the solution to the initial value
problem for the wave equation is given by

l (‘. l
t. X) = -—-5 . . Y . . 3 ). ,
Wb = e ,[,,,,,_m gix) daly) + ‘,,(m-, L_ﬂ.‘:'f(.t)da(})) (12)

The rest of this section is devoted to studying this formula.
The Cauchy data of K, are supported at {0}, so the {inite propagation
speed (Problem 3.7.5) implies that

o e (i
supp Kw(r)u supp r—(,‘-;(-—, c {Ix] < citl}.

This is clearly visible in formula (11).

Since K, is compactly supported. formula (5) extends immediately to all f,
g € C*(R'**). the corresponding solution belonging to C*(R'*?). The exis-
tence part of this assertion. but not the formula for the solution. is valid in all
dimensions (Problem 3.7.4).

(i) Huygens' Principle. If ue C=(R'"?) satisfies (O0,.;u=0 and Z(t) =
{supp u(t) U supp u,(1)}, then

Z(0) = (e, x): dist(x. Z(0)) = ¢l]}.

The set Z(1) is the set occupied by the wave at time t. The result is an
immediate consequence of formula (12). It expresses the fact that signals




§4.7. The Wave Equation Propagator ford =3 161

travel with speed no less than 1, in addition to the already known fact that
they propagate no faster than 1. The lower bound on the speed is most clearly
seen for data supported in |x] < p. In that case, the solution is supported in
—p < |x| — cltl < p. When t > O, this is the region between the two light
cones |x| — ct = +p sketched in Figure 4.6.2 There is a hole in the support
of radius c|t| — p corresponding to the fact that signals cannot travel slowly.

In the next section we show that the conclusion of (i) is not correct when
d = 2. Itholds precisely when d is odd and greater than 1. Ford = litis nearly
correct, an analogous result is correct for the support of V, ,u.

(i) The result (i) is true for any u € @' (R' **) which satisfies OQu = 0.

SKETCH OF PROOF. Let j, be a standard approximate identity in R'*? and
apply (i) to j, s u. Then pass to the limit ¢ — 0. a

The assertion (i) can be expressed in another way in terms of domains of
influence and determinancy.

(iii) Sharp Domain of Influence/Dependence. Suppose that ue C(R: HY(R?))
satisfies (Ju = 0. Then talues of the Cauchy data in an open set € influence
the solution only on {(t, x): dist(x, @) = c|t|}. The values of the solution u in
an open set U in space—time depend only on the values of the Cauchy data in
{x € R3: 3(t, y) € U, dist(x, y) = cltl}.

(iv) Monotonicity. If u € C*(R! *?) satisfies OQu = 0 and
u(ov ) = ov ut(o‘ .) 2 0’
" then (sgn t)u 2 0.

This is an immediate consequence of the formula. The analogous result is
false when d > 3 (see Treves [Tr), Folland [Fo], Courant and Hilbert [CH],
or Garabedian [Gara] for the propagator Ky when d > 3). Using Duhamel’s
formula together with an approximation argument as in (ii), one finds the same
conclusion under the weaker hypotheses, u e C}(R: 2'(R%), (sgn )0u 20,
u(0) = 0, u,(0) > 0. Here > Ois interpreted in the sense of distributions.

(v) If u s a solution of the wave equation on R! *3 and the Cauchy data satisfy
u(0) e C*, u,(0)e C~', thenue C*"'(R'*?).

We have seen that this loss of one derivative actually occurs for spherically
symmetric solutions. The above result shows that one never looses more than
one classical derivative when d = 3. If one measures regularity in the H* sense
there is no loss of derivatives in any dimension.
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PROBLEMS

We have seen that the regularity u, u, € C* x C*~! is not propagated while u, u, € H* x
H*! is. The latter regularity is called continuable. One might think that the difference
is that, in the second case, the norms are defined by integrals. Littman’s Theorem
asserts that norms based on L’ for p # 2 are not propagated by the wave operator in
dimensions d > 1. This is the wave equation analogue of Problem 3.4.2. Ford = 3,2
simple proof is available.

Consider the solutions 10 (32 — c2A)u = 0 with initial data

u@©,)=0 u(0 )=g

Then the map u,(0)— u,(t) is the Fourier multiplier sin(ct|¢]). If ge L?, then
u, € C(R: L2). It is reasonable to ask whether ge L” yields a solution with u, e C
(R: L?). The next problem shows that for ¢t # 0, the set of g in L? with the property
that u,(z) € L” is a set of first category in L’.

1. Littman’s Theorem for d = 3. Prove that ford =3, p# 2, andt # 0

lu (Ol s
P lu,(O) ., e

the supremum over all g € & (R*)\O.

Hint. Consider rotationally symmetric g and the corresponding explicit spherical
wave solutions. Solutions with small support at t = 0 spread over an annular region

of much larger volume at time ¢. The general principle described in Problem 3.4.2
is in operation.

For fe #(R’) the Radon transform of f is a function in C®(R x $U"!) defined by
h(s, 0) = {,....f do. Thus h encodes the integrals of u over the hyperplanes of R*.

2. Let u be the solution of the wave equation with u(0) = fe #(R?), 4,(0) = 0. Prove

that lim, . tu(t, y + ctw) = h(y- o, w)/4n, the limit being uniform for w € $*°! and
y in compact subsets of R*.
Discussion. It follows that for ¢ » 1, u(t, x) = k(] x| — ct, x/}x|)/4nt. If h did not
depend on w this would be an outgoing spherical wave as in §4.6. The general case
is an outgoing wave whose cross section depends on the direction w = x/|x|. A
similar formula holds for initial data, u(0) = 0, u,(0) # 0 (exercise). The correspond-
ing description of u for t » 1 is due to Friedlander [Fr]. The map ur—s h gives the
translation representation which is central to the Scattering Theory of Lax and
Phillip [LP). The Radon transform, h, also yields an elegant proof of Huygen's
principle in all odd dimensions (see Folland [Fo]).

Note that Theorem 4.3.6 shows that the asymptotic state for the heat equation
is described by one scalar quantity, fu(0, x) dx. For the Schrédinger equation,
Theorem 4.4.2 shows that all of & u(0) is needed, that is, a function of three variables.
For the wave equation we need h(s, ®), a function on R x S2. Again there is a
function of three variables. In the last two examples, the asymptotic states have as
much variety as the initial data.

Many partial differential equations have wave-like solutions. Hyperbolic equa-
tions are peculiar in having such a wide variety of waves. This is important for
nondigital transmission of information. It is no accident that hearing and sight rely
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on acoustic and light waves both governed by linear hyperbolic equations. Informa-
tion in the nervous system is transmitted in digital form and the governing equations
are parabolic.

§4.8. The Method of Descent

Knowing K in dimension d yields a formula for Ky in dimension 4’ for all
d’ < d. The method is called Hadamard’s method of descent and rests on the
simple observation that if one has a function of f of x, ..., x, and d > d',
then there is a naturally defined function F of d variables obtained by ignoring
the values of X, 1, ..., Xq, thatis, F(x,, ..., X,) = f(xy, ..., x;). fn: R = RF
is the canonical projection x++x,, ..., X, then this relation is simply that
F=fon

Proposition 1. If d > d’ and f, g € C*(R*) and F, G € C*(R’) are defined by
F =fonr, G = g o n, then the unique solution w e C*(R'*) to

wew=0, w0, )=F, w0 )=¢G, (1)
and the solution u to
Dx-t“u = Oo “(0) °) =f’ ur(o' ') = g’ (2)
are related by w(t, x,, ..., x;) = u(t, x,, ..., X;), that is, w = u(t, n(x)).

ProoF. Define w € C*(R'*¥) by w(t, x) = u(t, n(x)). Then w solves the initial
value problem (1) and uniqueness of solutions completes the proof. 0

Taked = 3,d' =2,and f = 0. Then

u(e, *) = K,ax(t)»g. )]
Since K(t, x) = K(t, —x), formula (3) for (x,, x;) = O yields
u(t, 0) = {K,.(1), 9> @)
On the other hand,
u(t, 0) = w(t, 0) = (K,.,(0). g7

1
= —_—5411‘: thx,.nl-cm g(xl. Xz) do.

As g is independent of x,, the latter integral is twice the integral over the
hemisphere in x; > 0. On the hemisphere, x,, x, can be chosen as coordinates
with x5 = ((c1)* — x3 — x3)'2. The unit upward normal is n = (x, x;, x,)/c|¢|.
The clement of surface area is
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Thus

2¢l1t| g(x,, x;)
= — = dx.dx,.
u(t, 0) ancit (ct)z = xi = x% Xy dX,

Comparing with (4) we have proved the following tneorem.

Theorem 2. Ford =2andt #0

sgn ¢
—_— ., x| < (|t,
Kw(t, x) = < 2nc /(ct)® — x2 —x2 (9
0, Ix| 2 clt].

Ky is a smooth function except when |x| = |ct|. There K diverges like
(clel = Ix)™"2. Thus, for ¢ # 0, Ky(t, -) € L*(R2). This is more regular than
Kw in dimension d = 3, where K is a measure, and less regular thanind = |,
where Ky is a bounded function. Measured in the scale H'(RY),
Kw(t. -) € H™*#**'"yR¢) for all £)0. K, loses one-half a derivative for each
dimension.

As in the previous section, finite speed is reflected in the fact that Ky, (1) is
supported in |x| < c|t]. However, for d = 2, (sgn t)K > 0 on |x| < c|t], the
support fills the interior of the forward and backward light cones. Thus one
cannot improve upon the general inclusion

supp u < {(t, x): Iy € supp u(0) U supp u,(0), |x — y| < cltl}, (6)

which follows from the finite speed of propagation. For example, if g > 0 and
J =0, then (sgn r)u is strictly positive on the interior of the set on the night-
hand side of (6).

For an initial disturbance supported near the origin, the solution ind = 2
decays like 1/]tjas |t] — o0 in {(t, x): |x| < (c — ¢)t|}. Ford = 3 asimilarinitial
disturbance leads to a wave which, for ¢ large, vanishes identically in such a
shrunken forward light cone. This is a manifestation of the fact that ford = 3,
K is supported on the surface of the light cone while when d = 2 the support
fills the entire insides of the cone. We say that Huygens' prnciple is valid
when d = 3 and not when d = 2. I can offer no persuasive physical intuition
to explain the failure of Huygens' principle in dimension 2. The principle is
true for odd d > 3 and not for other dimensions. Even for d > 3 and odd, the
Huygens’ principle is destroyed if the wave operator is slightly perturbed,
say 1o [J + & The historical association with Huygens is unconvincing.

There is a strong vestige of Huygens’ principle, namely, singularities propa-
gate with speed exactly equal to c.

Corollary 3. Suppose that f, g € H* x H*~* and that u is the solution of OQu=0
with Cauchy data equal 10 f, g. Let

' = sing supp(f) u sing supp(g),
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then

sing supp u(t) U sing supp u,(t)  {x: Ay e ), |x — y| = cltl}. M

PROOF. Write f and g as asum of two terms, one in C © and the other supported
in the set of points at distance &2 from sing supp( f)u sing supp(g). The
contribution from the smooth part is smooth, so we may suppose that f and

g are supported in such an &2 neighborhood of the singular support of the
Cauchy data.

The key observation is that

sing supp Kw(t) < {x:|x] = cltl}. (8)

This is valid in all dimensions though we have proved it only for d = 1, 2,3.
A general proof is outlined in Problem 2.

If ¢ # 0 and x does not belong to the right-hand side of (7), choose ¢ > 0so
that the R¢ ball of radius ¢ with center x is disjoint from the set on the
right-hand side. Choose ¢ € C&(Ix| < c|t]) with ¢ equal to 1 at all points in
the c|t] — ¢/2 disk.

Writeu = Kog + 6,K s f and u, = K «g + K+ Af. Write K(f) as a sum
oK + (1 ~ ¢)K. Then K(1) and @ K(t) are smooth and compactly sup-
ported so the contributions from @K are smooth on R¢. The contributions
from (1 — @)K are supported in an ¢ neighborhood of the right-hand side of
(7). It follows that the singularities of u belong to this ¢ neighborhood. Since
this is true for all ¢, the theorem is proved. O

The sharp propagation speed (7) for singular supports is sometimes called
the generalized Huygens principle. 1t is valid in all dimensions. The natural
generalization is true for variable coeflicient hyperbolic equations as well. The
generalized Huygens principle is of much wider utility than the strict Huygens
principle.

The fact that (sgn )Kw =0 whend = 1,2, 3 shows that (3, ., O, .2, and
], . share the monotonicity property. On the other hand, ifd > 3, it is no
longer true that (sgn )Kw 2 0.

PROBLEMS

The singular support can be criticized because it treats discontinuities in a function
on an equal footing with discontinuities in the ten millionth derivative. This weakness
is overcome by introducing the H* singular support as follows.

If x € Q < R and u € 2'(Q) we say that u is H* at x, and write u € H*(x) if there is
@ € C2(0) with ¢ identically equal to 1 ona neighborhood of x and ¢u € H*'(R*). Note
that this makes sense since pu e &'(Q) so extends naturally to an clement of
&'(R%) ¢ &'(R) with support in Q.

Definition. Forue 9'(Q)and se R

sing supp, u ® {x € & u is not H* at x}.
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Sing supp, is closed and increasing with s and
sing supp(u) > | sing supp, . (9)

Since the singular support is closed, it follows that

sing supp(u) = ¢l (U sing supp, u). (10)
a
1. Construct an example where the inclusion (9) is strict. Show that the inclusion (10)
is an equality.

In the next problem you will prove (8) using the method of nonstationary phase
described at the end of §4.4. The strategy is as follows. Use the representation

_ gt sin(ct!tl))
KW(‘) f ( CI{' »

and write sin(0) as (" — e~¥)/2i to show that formally

ieb’(c.z.o
2icKy(t,x) =Y I—-——R. o* = x¢ + ctl€l.

Fix t, x with |x| # c|t|. Then the phase is nonstationary, that is, V @ # 0. As in §4.4,
construct first-order partial differential operators Lt with Lte'** = ¢/**. Dropping
the +, Ky is a sum of terms of the form

I (L-e“)(ltl) &= I '“”'r(m) %

For m = m(k) large the resulting expression can be shown to be C* on a neighborhood
of ¢, x.

2. Fill in the details in the above proof as follows:
(i) Choose x € C3°(Rf) with x identically equal to | on a neighborhood of & = 0.
Write FKy = 1 F Ky + yF Ky withy = | — 1. Prove that the first term has
smooth inverse transform.

(it) For the second term show that
F U YFKw)= (1 - AYF (1 + KP) YFKw),

so it suffices to show that FY((1 + |¢|?) ‘¢F Ky) is smooth near ¢, x. Show
that this inverse Fourier transform is an absolutely convergent integral.

(it)) Analyze the absolutely convergent integral following the nonstationary phase
ideas sketched above.

3. Suppose f, ge | J(H'(R) x H*"'R’)) and u is the solution of (J,.,u4 = 0 with
Cauchy data equal to f, g. Let

[, = sing supp, f U sing supp, -, ¢
Prove that
sing supp, u(f) v sing supp,-, 4 (t) < {x: Ay e ) [x — yl mclef}.  (11)
Hint. Use the result of Problem 2.
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§4.9. Radiation Problems

Consider the radiation from an antenna which begins to radiate at a time 1,.
One finds an initial value problem

0,.u=F, u=F=0 for t<t,. (1)
If Fe LL.([0, T]: H*(R*)) for some s € R, Duhamel’s formuia yields

u(t) = ‘r R(t - 0)F(0)do = I Kw(t — 0)s F(o) do, (2)

- -X

where Ky is given by formulas (4.5.3), (4.8.5), and (4.7.11)ford = 1, 2, 3. For
t > o we have

d=1, R(t - o)F(0) = %J‘ F(o, y) dy,
e

~yisett-a)
d=2, R(t - o)F (o)

1

- F(a, y)(c2(t — 0)* — |x — yI?) "2 dy,
2nc J‘J‘lx-ylsm-ab

d=3,  R(t - o)F(c) =(@dnrc?)! Jj F (o, )')‘_LadZ(y).

Ix~yl=ctt—0)

Using the expression for d = 1 in (2) yields
u(t, x) = 1 J‘ J’ F(o, y) do dy. (3)
2c Ix=ylsctt=a)

The double integral is over the backward light cone from (i, x). Ford = 2 we

find
t F(a, y)
ll(l, x) = "z;'c' jjj.h =3 )ﬁ do dy (4)

—piscu-e (3t — @) = |x — y|?

Here we have a triple integral over the solid backward light cone dropped
from (¢, x). For d = 3 we find

u(t, x) = (4nc?)™! J.IL‘ Flo,y) dA ()

~y|=cit~o) (l - d) (l + CZ)-l’

where dA is the element of three-dimensional area on the surface of the
backward light cone from (¢, x). The Pythagorean factor at the end comes from
the relation d4 = (1 + c*)' do dT which is explained in Figure 4.9.1.
Typically, an observer is at a distance which is large compared to the
dimensions of an antenna. This implies that [x — y| varies little for x an
observation point and y € supp(F).
With this in mind, suppose that supp(F) < {lyl <r}, r «|x|. Let
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4
Ix!= ct
¢ do
do
vl + c?0o
= -
Figure 4.9.1

Juy = [ F(i. y) dv. We obtain the following approximations:

t—=|x}¢
d=1, u(t. x) = ! J f(o) do.

"
&C g

1 1-ix1e
d =2, u(t, X) = = - J flo)ct —6) —Ix|2)7t da,

2nc ),
d=3.  uxxf0ZIN9
4nc| x|

This sort of approximation is common. One has a function ®(x) supported
near 0 and one must approximate (®. ¢) when ¢ varies little over supp .
Replacing ¢ by its Taylor polynomial of degree N yields

(DY) ~ | |Z\' «?’¢(O)<®. —;>

The approximations above correspond to N = 0. From the point of view of
distribution theory, this amounts to replacing ® by

5 <¢, 5.,> &5,

This is called the muitipole approximation to ® and the coefficients of 0%5, the
multipole moments. From this point of view, the approximate solution of the
radiation problem comes from approximating F(t, y) by

F(t,y) ~ J'F (¢, y) dy 6(y) = f()o(y).
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Thus it is not surprising that the approximations are exact solutions to
O et = f()6(y) u(t, )=0 and f(1)=0 for t<t,. (6)

This is called the radiation problem with point source of strength f@. If
feC®(R)

f(Yoe C*(R:H*) forall s< —df2

The general theory implies unique solvability of the radiation problem
with '

ue C*(R: H**'), forall s< —d/2

We next verify that the exact solution of the radiation problem (6) is equal
to the approximation determined above. In all d

u(t) = I' K(t — 0)f(0)d do.

The values of the integrand ford = 1, 2, 3 are

d=1  K(t-afla)d = j’:i('")XIxism-a)'
d=2, K(t-0)flo)é= ’-f(—-)(cz(t — ) = X1t seu-orr

d=3  Kt—o)fio)s =L dx

4RC|XI Ixi=c(1 —0)*

Integrating do from — oc to ¢ gives the solution to (6). Ford = 1, and ¢, x fixed,

flo) .
K(t —a)f(0)6 = { & if |x| <clt - o),
0 otherwise.
Integrating yields
tmhebe  de
u(t, x) = j' f(a) . )
Similarly, ford = 2
/(o) ,
T3 f -
K¢ — 0)f(0)6 = { 2xe(c3(t — o)F —|xI*)"? if x| <c(t-oa)
0 otherwise,
(8)
e fio)
u(‘. x) I—Q 21 c(;r“ — cji.- lW do'

Both cases give the approximation formulas from our first calculations.
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Both computations are formal since they deal with point values. We know
that o — K(t — 0)f(0)d belongs to C(R: H') for s < —d/2. Thus the integral
is a2 Riemann integral of an H* valued function. We have performed natural
pointwise integrals. To show that the distribution u(t) is given by the function
u(t, -) in formula (7) or (8), one must show that for ¢ € CF(R?)

I u(t, x)¢(x)dx = J‘ ‘ (K{t — a)f(0)d, §) do.

This is not difficult to do. The justification for d = 1, 2 is analogous to, but

simpler than, the case d =3 which follows. When d = 3 we have for all
Ve Cy(R)

(Kt = a)f(0)3, ¥) = I V(x)f(0)

4nci(t — o)

Thus the formula for u as an integral yields

ALisimce-or

(u(t)s W) = ) (J 4ncf((:)_ 6)f{0’) dzm.d,..,,) da.

Introduce spherical coordinates, x = rw, r € J0, oc[, w € §2, dx = r? dr dw, to

find
j4ncf((:)— o)f(o) dzlxltcu-cb = JW(rw)I( - ,") r* dw,

4ncr ¢

where we have used the factthatr = ¢(t — ) in the region of integration. Then
o=ter=0ando= —Cce—~r=c,so0

{w,¢) = I J-ﬁ(;::) ( -C)rzdwdr

St = rfc)
< dncr ' d‘>

which proves the expected result, u = f(t ~ | x|/c)/4nc|x|.
An observer at a fixed position x

Must differentiate the observed field to measure f if d = 1.
Observes an average of f weighted heavily at ¢ — |x|/c if d = 2.
Observes f(t — {x|/c) exactly with 1/]x| decay if d = 3.

Happily for us, our environment is three-dimensional and electromagnetic or
acoustic signals transmitted from an antenna are received without any need
of decoding. This makes the technology of radio, television, radar, and sonar
much simpler than they would be if d were any dimension other than 3. To
the question, “Why is space-time four-dimensional?”, this yields the facetious
reply, “For the sake of better TV reception”.
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PROBLEMS

1. The digital signal 010100... is transmitted via the source function f = x;, 20, s((t)-
Let x = (20,0, ...,0) € R? and sketch roughly the form of the signal received at
R, x {x]} whend = 1,2, 3.

2 If f e C*(R), estimate the smoothness of the solution u to the radiation problem (6)
at points x # 0. Hints. Using the Sobolev regularity f(¢)6 € C*(R : H*)for s < —d/2
gives a lousy estimate. Use the formulas of this section. The answer depends on d.




CHAPTER 5
The Dirichlet Problem

§5.1. Introduction

This chapter is devoted to studying boundary value problems for second-
order elliptic equations. The variational (also known as Hilbert space) ap-
proach to the Dirichlet problem is emphasized. Maximum principles are
discussed in §5.10 and §5.11, which are independent of the preceding sections
and are essential reading along with §5.1, §5.2. and §5.3. Sections 5.8 and 5.9
address the technically difficult question of the regularity of the weak solution
constructed in §5.3. Sections 5.4-5.7 treat a variety of topics which rely solely
on the H' variational approach to the Dirichlet problem. It is interesting that
this straightforward argument propels one so far.

Elliptic boundary value problems arise in a striking number of distinct
settings in science and geometry. For a first example, consider the flow of heat
in a bounded regular subset Q < R%. The dimensions d < 3 are the most
important in practice. The temperature t(¢, x) satisfies the heat equation

t,=vA, v in R xQ, (1)

with v > 0.

Suppose that a fixed-temperature distribution at the boundary is main-
tained by a heating and refrigeration system. Then there is a function g on éQ
such that

v(t, x) = g(x) forall xeéqQ. (2)

Heat flowing from hot to cold will smooth out irregularities in an initial
temperature distribution v(0, ‘). Given the fact that the boundary tempera-
turesare kept at a steady state, it is plausible that the system will evolve toward
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an equilibrium state u(x), that is,

lim o(t, x) — u(x) = 0.
-+
Put another way, as 4 — oc the functions v,(¢, x) = v(t + A, x) converge to u(x)
on [0, o[ x Q. Since cach of the ¢, satisfies the boundary value problem (1),
(2), one expects that u is also a solution. Since u does not depend on time this
yields
Au=0 inQ and u=g oncQ (3)

This boundary value problem for u is the classical Dirichlet problem. It is
not clear that we have extracted all the necessary physical information to
determine the asymptotic state of the heat equation. Thus it is reasonable to
expect existence of solutions to (3), but there may be many such solutions.
Note also that the boundary condition gives u and not éu/Cv, while Cauchy
data for the second-order operator A consists of both functions. This might
lead one to believe that u is not completely specified. If there were many
solutions, that would show that additional properties would have to be given
to determine which is the equilibrium state to which v converges. In fact there
is uniqueness, so that there are no additional physical constraints on the state.
The firstindication that (3) is uniquely solvable comes from explicitly solvable
problems with exceptionally simple geometry.

The very simplest example is the case Q@ = Ja. b[, an open interval in R!.
The Dirichlet problem is then

2
(ad;) u=0 inJa.bl. u@)=gla) and u(b)=g(d).

The unique solution is the linear function u(x) = g(a) + (x — a)(g(b) — gla))/
(b — a). More complicated examples are given in Problems 1, 2, and 5.

An entirely different problem leading to (3) is the construction of a con-
formal mapping, ¢(z) from a simply connected domain, Q = C = R?, to the
disc {)z] < 1}. Translating Q if necessary, suppose that 0 e Q. Using a Mobius
transformation in the disc we see that if such a ¢ exists, then there is one with
©(0) = 0. Then ¢(:)/= is nonzero, so can be written as e*** with h and k real
and harmonic. Then

logle(e)l = logizi + h(2).
Thus h is a solution of the Dirichlet problem

Ah=0 inQ and = —log|z] oncfd

Riemann’s idea for a proof of existence for this Dirichlet problem is described
in the next sections.

A third example is the problem of finding the equilibrium position of a
membrane stretched over a domain Q c R?, whose height above points in the
boundary of Q is known. This problem occurs if the membrane is attached to
a fixed support surrounding Q.




174 S. The Dirichlet Problem

Seck the equilibrium position as a minimum of the potential energy func-
tion. If u(x) is the height of the membrane above the point x €, then a
reasonable candidate for the potential energy is the surface area of the surface
z = u(x) since energy is stored in the membrane when it is stretched, that is,
when its area is increased. This leads to the following nonlinear variational
problem called Plateau’s problem

minimize I (1 + [Vu|?)"2 dx dy 4)
o

the minimum taken over all functions u with u| ., = g, the given height of the
membrane at the boundary. The functional to be minimized in (4) is the surface
area. If one tncludes gravitational effects there is an additional contribution
to the potential energy leading to the variational problem

minimize I (1 4 |Vul®)*? + cudx dy, (5)
v=gon 0
where ¢ is constant. :

The minimum principle leads to a differential equation for u in the standard
fashion. Denote by J the functional to be minimized. Then if ¢ € C*(f),
¢®loaq =0, then u + £p is a3 competing function. If J is minimized at u, then
J(u + £¢) is minimized at ¢ = 0. Thus (d/de)J(u + €¢)|,=o = 0. This equation
is called the Euler or Euler- Lagrange equation. For many problems it is a

partial differential equation. In the present case, a straightforward computa-
tion vields

d (7))
(&E)J(“ + QMmoo = LZ (c?,,.cp)(l T Ve + cp dx.

Integsate by parts to move the derivative from ¢ to the u terms. Since ¢
vanishes at ¢S, the boundary term vanishes. This yields

(G, u)
L tp[z Cs, TT 9™ + c] dx = 0,

This can vanish for all ¢ with @] = 0 if and only if the function in square
brackets vanishes. Thus, for u we find the boundary value problem

(Cy,u)
X a,,.“ + |Vul®)T

The differential equation in (6) asserts that the mean curvature of the surface
z = u(x) is equal to —c/d. If ¢ = 0, the surface is a minimal surface, the name
coming from the fact that it minimizes area as in (4).

A connection between the nonlinear problem (6) with ¢ = 0 and the classical
Dirichlet problem is that the latter is a good approximation of the former
when the surface is nearly horizontal. To see this, note that for nearly flat
surfaces, the derivatives of u are small. If we drop higher-order terms in these

/f+c=0 in Q, u=g ondQ (6)
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derivatives, the boundary value problem (6) becomes the classical Dirichlet
problem Au = 0 in £, and u ;q = ¢. Essentially the same observation is that
A is the linearization of the differential equation in (6) at the solution u = 0.
A third way to view this approximation is to note that Taylor expansion of
the integrand in (4) about [Vuj = 0 shows that

I (1 + {Vul?)'? dx dy = 1Q| + J' |Vu|? dx dy + O(|Vul*).
0 o

Dropping the higher-order terms is essentially the same approximation as
above so should lead to the classical Dirichlet problem. Dropping those terms
yields the minimum principle
minimize J' (Vul? dx dy.
u=gon O n

Thus, one should not be surprised to find that this minimization problem
is equivalent to the classical Dirichlet problem. Exploiting this, or similar,
minimum principles is called the variational approach to the Dirichlet problem.
It is the path that we follow.

In the problems, we will study some examples where the Dirichlet problem
is solvable more or less explicitly. These examples are important since they
illustrate in concrete cases the general principles to be proved later, and they
also serve as a testing ground for conjectures.

L4

PROBLEMS

The simplest multi-dimensional Dirichlet problems are those where the domain Q
has spherical symmetry. For example, if Q is the region between two balls,
Q = {x:r, <|x| < r;} and the boundary data are spherically symmetric. The Dirichlet
problem becomes

Au=0 inQ u(x)=g() forixl=r, j=12.

1. Find the unique rotationally symmetric solution to the above annular Dirichlet
problem. Hint. First solve Problem 4.6.1. Then match the boundary data.

Next turn to the case 2 = {x € R?:|x| < 1}. Use polar coordinates, u = u(r, 8) with
u periodic in 0 with period 2at. Fourier series expansion in 0 yields
ur,0) = Y u,(re”,

ane l

with coefficients rapidly decreasing in » if u is smooth. The boundary condition at
r = ] implies that .
u(l) =g, where g(6) =Y g.e

with g, rapidly decreasing if g € C*(Q).

2. Show that for boundary data g € C=(éQ), the Dirichlet problem in the disc has
exactly one solution e C°(cl(Q)). Hinz. Show that the u,(r) are uniquely and
explicitly determined and the resulting series can be differentiated termwise.
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3. In the spirit of Chapter 4, we analyze the explicit formula in Problem 2.
(i) Use the formula to show that u(0, 0) = [ g(0) d0/2x. This is the case d = 2 of
the mean calue property. Corollary 5.10.3.
(ii) For 0 < r < 1, define a smooth function K.,(0) on the unit circle by

K,(O) - Z rluleinﬁ.

ned

Show that the formula for u is equivalent to u(r, -) = K, g, the convolution
performed in S'.

(tit) Use the formula for the sum of a geometric series to find an explicit expression
for K,.

Discussion. The function K is called the Poisson kernel.

4. Consider the Dirichlet problem in Q = {x e R*:|x| < R} for the equation of con-
stant mean curvature equal to H,

. (¢ ,u) _ _ .
Z Cy, (-i—:;—lv;-l-zj-l—: = dH. u=0 oncQ

(1) If 0 < H < IR, use spheres to find an explicit solution.

(i) If H > 1,R, show that there can be no solution in C*(cl()) as follows (see Finn.
[Fi] for a discussion of this result of Bernstein and related results): ( 1) Integrate
the equation over Q. The right-hand side is equal to w,H R where ), is the d
volume of the unit ball in R’. (2) Perform an integration by parts to express the
left-hand side as a boundary integral and show that that integral is less than or
equal to dw,R*"".

DiscussioN. The linearization of this boundary value problem at H = 0, u = 0,

is the classical Dirichlet problem. Thus, for H small. one cxpects the two problems

to behave similarly. For large u the nonlinear aspects dominate leading to

nonsolvability.

5. Let Q = {x € R 0 < x, < 1}. Use the Fourier transform with respect to the vari-
ables (x,....,x,.,) = x’ to prove that for g,. g, € L(R™) there is exactly one
solution u € C*([0, 1] : ¥(R%) to the Dirichlet problem

Au=0 inQ, ul,,.0=9go and ul,. =g,.

Find an explicit expression for the solution.
Discussion. This example is sometimes used to explain why one boundary condi-
tion is sufficient, in contrast to the two functions which comprise the Cauchy data.
The reasoning is that there are really two functions. one for the bottom of the
boundary and one for the top. However, considering the square region 0 < x; < |
for i = 1, 2, one finds four boundary functions corresponding to top, bottom, and
two sides. The region 0 < x; <1 fori=1, 2, ..., k yields 2k boundary functions.
Thus, this explanation should not be taken too seriously.

The fact that the boundary conditions are given on a boundary which surrounds
€.in contrast to the Cauchy problem where the initial plane is on one side of {t > 0},
is at least part of the explanation.
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In the last section a variational equivalent of the Dirichlet problem was
motivated by lincarizing the principle of minimum potential energy for a
nonlinear membrane. We begin this section by giving an independent motiva-
tion based on an analogy between the heat equation and gradient flows in
finite dimensions. These are the flows of ordinary differential equations

x = —grad ®(x). (1)

The integral curves of this equation move in the direction of most rapid
decrease of @, in particular, ® decreases along orbits. Precisely

doz(,,) = (grad ®(x(t)), ¥(t)> = — |grad O(x()i’. (2)

Flowing along such integral curves is a reasonable way to seek minima for ®.
This is called the method of steepest descent. The flow is also a centerpiece in
Morse Theory. The ordinary differential equation (1) is equivalent to

(&) = (=V®, ) for all Y € R’ This in turn is equivalent to
d d P
Z <) = 7 = O(x() + eh)lvor forall ¥ eR" (3)

The heat equation with Dirichlet boundary condition
p,=vAv on[0,x[ xQ  tlt.x)=g(x) forxe cQ, 4)

has an analogous structure. Note that since the heat equation does not satisfy
the Hadamard - Petrowsky condition for backward evolution we only expect
a solution in t > 0. Suppose that Q is a nice boounded open subset of R?. The
role of the function ® is played by the Dirichlet integral

Jiw) = ;j‘ IV, wi? dx.
Begin by considering J as a functional defined on the setof we C 1(Q) whose
restrictions to 90 are equal to g. Call such w admissible. 1f w is admissible and

@ € C'(§) with @] ;0 = 0, then w + £p is admissible and computing as in the
last section yields

cn

The boundary term in the integration by parts vanishes since ¢ is equal to
zero on &Q. Thus for solutions of (4)

-d—.l(w-’rw)l,.o=vj. Vo -Vwdx = -va (pAwdx-i-vI (piz—vdo. (5)
de 0 9] "l

d d
= ] 3 _ — e =0- 6
yr L v dx L ov, dx L @vAr dx % J(v + e@)l,=0 (6)

The analogy with (3) is clear.
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This analogy suggests that J(v(t)) is a decreasing function of time. To verify
this, differentiate to find

d
‘T‘J(v(t)) = VJ; Vu,-Vedx = —vJ‘

v, Av dx + vJ‘ v,@da.
Q a

n n
The boundary term in the integration by parts vanishes since v, =0,g(x)=0
on Q. Using the differential equation yiclds

ii—.l(v(t)) = —y2 I (Av)* dx < 0.
dt Q

For the gradient system (1) on R? it is easy to show that if |®(x)| = o as
|x{ — co, then as ¢ tends to infinity, orbits tend to critical points of ®@. Recall
that critical or stationary points are points x € R’ such that grad ®(x) = 0. By
analogy, it is reasonable to expect that the solution of the heat equation tends
to a critical point of the functional J. Since J is strictly convex there is only
one such critical point, a global minimum (Proposition 1(1ii)). In the previous
section, weargued that the asymptotic state for v is the solution of the Dirichlet
problem. These arguments suggest two things:

(1) the approach to equilibrium for the heat equation can be studied using
this gradient structure; and

(2) the solution of the Dirichlet problem minimizes the functional J taken
over all functions equal to g at 6.

Both of these ideas are correct. We pursue the second.

Proposition 1 (Dirichlet’s Principle). Suppose thar u € C*(§) and uj = g.
Then the following are equivalent:

() Au=0inQ2
(i) uis a critical point of J in the sense that

;EJ(u +e9)leso =0  forall oeC*Q) with ¢|.q=0.
(i) uminimizesJ in the sense that J(u) < J (W) forallw € C}(Q) withw| o = g.
PRrOOF. The equivalence (i) <> (ii) is an immediate consequence of (5).

To implication (ii) = iii) is proved by using (i}) with ¢ = w — uto show that
fVuV(w — u) dx = 0. Then since J is quadratic

J(w) = Ju + (w— u)) = J(u) + ZIVuV(w —u)dx + J(w — u).
The middle term vanishes and the last is nonncéative so J(w) 2 J(u).

Conversely, assuming (iii), the function J(u + ¢p) has a minimum at ¢ = 0
for any ¢ as in (ii). Thus (d/de)J(u + @) =0 = 0 proving (ii). '
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Riemann concluded that the Dirichlet problem was solvable, reasoning that
J is nonnegative and so must have a minimum value. Choosing a function u
with J(u) = min(J) solves the problem.

Brought up as we are, on the rigorous analysis of the end of the nineteenth
century, the flaw in this proof is apparent. A function which is bounded below
has an infimum, but there is no guarantee that the infimum is a minimum.
There may be no point where the infimum is achieved.

The first rigorous proofs that the Dirichlet problem is solvable followed
other lines. Poincaré’s method of Balayage, Perron’s method of subharmonic
functions, and Neumann's method of integral equations are described in many
texts (e.g. [CHJ). Hilbert, as a part of his study of the Calculus of Variations,
showed that Riemann’s original strategy is valid. This is the path that we take.

For technical reasons, it is easier to treat the inhomogeneous differential
equation with homogencous boundary conditions rather than the other way
around. Thus we will solve

Au=f inQ and u=0 oncQ (7)

If we know how to solve this problem for smooth data, and are given a smooth
g on &Q, then, to find a harmonic function with boundary values equal to g,
simply choose a G € C*(Q) with G|, = g, let f = —AG, and soive (7). The
sum u + G does the trick.

A variational formulation of problem (7) is given in the next proposition
whose proof parallels that of Proposition 1.

Proposition 2 (Dirichlet’s Principle). Suppose that ue C*(Q), ul s =0, and
f€ L3(Q). Then the following are equivalent:

(i) Au = fin 2'(2). _
(i) J(u) < J(w) for all we C'(Q) with w|q =0, where J is the functional
defined by

J(w) = Ile(x)l’ + 2w(x)f(x) dx. (8)

(iii) u is a critical point of J in the sense that

d -
F.ej(u +EQ)lmo=0 forall oeC!'(Q) with ¢lan=0. (9)

Computing the left-hand side of (9) yields

d .
d—J(u + @)l iu0 = 2JA Vo -Vu + fudx.
€ n

When the right-hand side vanishes for all ¢ as in (9), we say that u is a
variational solution of the Dirichlet problem. This formulation is the starting
point of the Galerkin method in numerical analysis.
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PROBLEMS

We give a third motivation for Dirichlet’s principle following an analogy with classical
mechanical systems with damping.

In the presence of damping. a vibrating membrane tends to an equilibrium state as
ttends to + «c. A mechanical analogue is the system of ordinary differential equations

mx + ax = —grad ®(x), m.a € ]0, o[. (10)

The energy for solutions is a decreasing function of time

d (mlx'lz

de\ 2

where @ is the potential energy. If ® tendsto + oo as | x| tends to infinity, thenas ¢t - ¢,
each orbit converges to a critical point of .
The differential equation (10) is equivalent to

+ 0(x)) = x(mx + grad ®(x)) = —a|x|* <0,

d\* d d
m(a_‘) (x,. @) + aa(x‘ @)= _I‘:O(x + £9)| (=0 forall @eRY (11)

The damped wave equation on Q is

Ov+avy,=0 on[0, [ x Q, t| o = 9(x). (12)

1. Show that v € C¥([0, [ x Q) with ¢| 4 = g satisfies (12) if and only if for all ¢
vanishing at ¢Q,

d\: d d
(@) J,rots o [rote= - G o

where J(w) = (|Vw|? dx/2. By analogy with the mechanics case, find and prove a
law of energy decay.

Discussion. These computations suggest that one can study the approach to
equilibrium by analogy with the finite-dimensional case. If one supposes that there
is approach to equilibrium, that is, v, = v(t + 4) approaches a limit u(x) as i — o0,
then, as in §5.1, u is a solution of the Dirichlet problem (5.1.3). This is a third path
leading to the idea that one should look for solutions of the Dirichlet problem
among the critical points of J.

2. Prove an analogue of Proposition 2 relating the solution of the boundary value
problem

Au+cu=f inQ, u=0 ondQ (13)

and extrema of the functional

J(w) = I |Vw|? — cw? + 2fwdx.
Q
Here c is a real number.

3. For Q fixed show that there is a ¢y < 0, so that for all ¢ < ¢cq the functional J in
Problem 2 is not bounded below, that is, the infimum of J over C$(Q) is equal to
minus infinity.

Discusston. This shows that the mere existence of a variational formulation is not
a panacea. Using the results of §5.7, one can show that the largest ¢, with this
property is the largest eigenvalue of A on Q with Dirichlet boundary conditions.
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§5.3. The Direct Method of the Calculus of Variations

Proposition 5.2.2 shows that to solve the Dirichlet problem (5.2.7}, 1t is
reasonable to look for a function u which minimizes the functional

J(w) = J' |IVw|® + 2wf dx. (n
0

in the class of functions vanishing at the boundary of Q. We suppose that
f € Re L*Q). The strategy we lollow is a standard procedure called the direct
method of the calculus of variations. It was used by Hilbert not only to solve
the Dirichlet problem, but also to prove the existence of length minimizing
geodesics on complete Riemannian manifolds and for a variety of other
minimization problems. The method consists of five steps.

Step 1. Show thatinfJ > —=.

Step 2. Choosc a minimizing sequence u,. That is. choose a sequence u, such
thatlim J(u,) = inf J. Sometimes one can arrange additional special properties.

Step 3. Derive estimates for the «,. Usually, the key fact i1s that for n large
Ju,) <e+inlJ.

Step 4. Based on the estimates in Step 3, extract a subsequence of the u,
which converges. This step is a compactness argument. The topology is
dictated by the estimates. The better the estimates. the stronger the con-
vergence. and the easier is the next step.

Step 5. Show that if u is the limit of the subsequence. then J(u) is equal to
inf J. This step is often achieved by showing that J is lower semicontinuous
with respect to the convergence in Step 4.

In the present case. Steps 1 and 3 are performed simultaneously and rep-
resent the heart of the analysis. The functional J has two terms, one of which
is nonnegative. To show that J is bounded below amounts to showing that
the other term cannot by very negative without the positive term being just
as positive. The set of functions over which we are minimizing is taken,
provisionally, as the setof ¢ € C 1(Q) with ¢ | ;q = 0. The class will be enlarged

(completed) for Step 4. The second term in J is estimated using the Schwartz
inequality

< 2ol S L2y

J 2of dx

To bound this in terms of the nonnegative part of J, we use a lower bound
for the latter.

For any w € $*~!, the width of Q in the direction of w (see Figure 5.3.1) is
equal to

w(w) = sup {(x, w) — inf {x, w).
xe 2}

The function w is a positive continuous function on the compact sphere $¢°!.
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>
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Figure 5.3.1

The minimum width of Q, denoted § = 5(€), is defined as
3(Q) = min{ww): we §'} > 0.
If the minimum is attained at a direction w, then the domain Q is contained

between and touching two parallel hyperplanes in RY with normals equal to
w and at a distance § from each other.

Theorem 1. If ¢ € C(Q) with ¢| ;q = 0. then ||@ll .20, < 6(Q) V@il L2q)-

Assuming this for the moment, we show that J is bounded from below.
Estimate

1 1
2ol f Mg = 2\/;3 follL2a 7 U S ell@lizn + Ellf [y
p |

This trick of estimating a product as a small factor times the square of the first
factor, plus a large factor times the square of the second is sometimes called
the Peter- Paul inequality and is very useful. Theorem | then yields

1
2l @leaal Sl < 282 IVQlLaa + — 1S I o

Choosing ¢ = §72/2, we find that

J(@) 2 HIVolliaq, — 26° 1A 1E2qn- (2)
In particular, inf J > — 0.

PROOF OF THEOREM 1. It suffices to prove the theorem for real valued ¢, since

the complex case follows upon applying the real result to Re(yp) and Im(o)
and adding the squares of the results.

Choose Cartesian coordinates such that Q € {—a < x,; < a} witha = J/2.
Let x = (x,, x’), X’ = (X,, ..., x,). Extend ¢ and V¢ to vanish outside Q). Then
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forany x’and —a<x, <0

‘Pz(-"u x’) = J- 6,(¢2)dx, = 2-[ @0, ¢ dx,

0 0 12
Sz(J‘ ‘PzdeJ. (G 0)° dxl)

The right-hand sideis independent of x, . Integrate dx, from —ato0to find

0 0 0 2
I (pzdx,SZa(J. «p’dx,] (6,¢)2dx1) .

Square to find
o o
J‘ ¢? dx, <(2a) J‘ @, ¢)* dx,.

Integrating dx’ yields

ll<plliz.,-.,o(. Re-1) S (20)z "al‘p"i’(]-a.O[ x R4~ 1)

Adding this to the corresponding result for 0 < x, < @, and noting that
2a = J, proves the theorem. O

For Q = ]0, [, using Fourier sine series shows that

dlde
1@hsgo. < n l dx, iuuo.m
with equality holding if and only if ¢ is a multiple of sin(nx/5). Using this in
place of the Fundamental Theorem of Calculus and the Schwartz inequality
in the proof above improves the constant in Theorem 1 to §/x.

Having proved that J is bounded below, let i = inf(J), the infimum taken
over those ¢ € Re C'(Q) with ¢| o = 0. Choose ¢, from this set with J(¢,) — i,
corresponding to Step 2 of the direct method.

Step 3 is to find estimates for the ¢,. Inequality (2) implies that

lim sup Ve, 170, < 2i + 48%||f 122 3)
Theorem 1 yields

lim suphe,llz2n < 5(2i + 482 | fl 2q) 2. @

These estimates show that the derivatives of order less than or equal to |
of the minimizing sequence are bounded in L%(Q). This bound recalls the norm

in H!, and the next lemma shows that the @, is naturally a bounded sequence
in H'(RY).

Lemma 2, Suppose that Q is bounded and sufficiently regular so that integra-
tion by parts as-in (1.7.3) is valid.
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() If ¢ € C*(Q), then the distribution Te 2’ (R*), defined by (T, ¥ = fave dx,
satisfies

(GT¥) = J' Yi0 dx — J' oyn,(x) do,
n a

- where n =(ny,...,n,) is the unit outward normal to Q. In particular,
Te HY(R®) if and only if ¢| g = 0.
(ii) If @|an =0, then T belongs to the H'(R’) closure of Cg’(€).

ProoF. The formula for ;T follows immediately from the definition of dis-
tribution derivative after an integration by parts. Since Te L?(R?), to show
that Te H(R?) is equivalent to showing that grad(T) € L*(R?). The formula
for ¢, T expresses it as a sum of the L? function ;¢ and a second term which
is supported in ¢Q. The second term is in L? only if it vanishes identically
which is the case if and only if ¢{n = 0.

For ‘the approximation by elements of CJ(Q). let K(e) = {x e
dist{x, éQ) = ¢} be the standard exhaustion of 2. Choose j € Cg°(Ix] < D) with
j = 0and {jdx = 1, and define approximate delta functions j,(x) = £7%(x/e).
Let y, =J. Ak Then 1€ Cr@), 0<<1l yx=1 on Kie) and for
O<e<|,

] IVilp.
Vil < IViclorall ke lleeag < — l: (a“.

Let @, = 1,0 € CA(Q). Then o, converges to T in L*(R’) and we next show
that Ve, converges to VTe LX(R?). This is equivalent to Vo, —» Vo in L2(SD.

Now Vo, = 1, V¢ + ¢Vx.. Lebesgue’'s Dominated Convergence Theorem
implies that the first term converges to Vg in L%(Q). For the second term, note
that in the support of Vy,, ¢ is no larger than ¢ times the sup norm of V.
Thus the product @Vy, is bounded independent of ¢. Since the product
vanishes outside Q\ K (¢) and the measure of Q\K(¢) tends to zero, the second
term tends to zero in L(Q).

As n — 0, the function j, * (1. ¢) € C5 (Q) converges to 1. ¢ n H 1(RY) and the
proof is compiete. O

The lemma shows that the estimates (3), (4) for the minimizing sequence can
be interpreted as saying that {¢,} is a bounded sequence in H'(RY). It also
shows that we may replace our minimizing sequence with another, still de-
noted @,, with ¢, € C2(R). This suggests the introduction of the following
space which should be thought of as theset of elements in H'(R‘) which vanish
on ¢Q and on the exterior of .

Definition. H'(Q) is the closure in H'(R?) of C3(Q).
Elements of H!(Q) belong to H!(R*) and have support in Q

Exampie. If Q=70,I[ <R, then Sobolev’s Theorem implies that
H'(R) ¢ C(R). The elements of H'(Q)are continuous on [0, 1] and, as uniform
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limits of elements of C3°(10, 1[), must vanish at the endpoints. In this simple
case one sees immediately that membership in H" implies that homogeneous
Dirichlet boundary conditions are satisfied.

The closed subspace H'(Q) of H '(R?) is a Hilbert space in the H '(R*) norm.
Since H'(R?) is separable so is H'(Q). Theorem 1 implies that on H!(Q),
(Ja!Vul? dx)'? is a norm cquwalent to the H'(R’) norm. Because of its close
relation to the functional J, this is the norm we will use for HY(Q). The
functlonal J is continuous from H 1(Q) to R. In particular, the infimum of J
on Re H’(Q) is equal to its infimum on Re CF(Q). For regular ), Lemma 2
shows that H(Q) n C*() coincides with those C! functions which vanish at
the boundary.

The compactness required in Step 4 of the direct method is provided by the
fact that a bounded scquence in a Hilbert space has a weakly convergent
subsequence. We recall some of the basic resuits concerning weak convergence
in Hilbert spaces. Let o denote a Hilbert space. A sequence h, in ¥ converges
weakly to a limit h if and only if for all k € W, (h,, k) — (h, k), where (-, *)
denotes the scalar product in ). Weak convergence is denoted h, — h.

Weak convergence is equivalent to the pointwise convergence of the contin-
uous linear functionals, i,(-) = (-, h,) to I(-) = (-, h). The Uniform Bounded-
ness Principle shows that for weakly convergent sequences, {I,} and therefore
h, are bounded independent of n.

If h,—h, then ||h|| < lim in{||h,|l. That is, || || is lower semicontinuous with

respect to weak convergence. The proof is simple. One need only consider
h #0. Then

ki3 = (h, h) = lim(h,, h) < lim infl(h,, h)| < lim inf|h, || 1A).

Dividing by |||l yields the result.
Every bounded sequence in a separablie Hilbert space has a weakly con-
vergent subsequence (Problem 2). Therefore the minimizing scquence has a

subsequence, still denoted ¢,, which converges weakly in H? () to a real
valued limit w.

The final step in the direct method is to show that J(u) = i. Write J(w) =
Iwli? + 2 wfdx. The lower semicontinuity of norm with respect to weak
convergence shows that [[u]> < lim inf{¢,[|%. For the second term, note that
the map wr 2{fwdx is a continuous linear functional on H'(Q). Weak

convergence of the ¢, is equivalent to the convergence 4(p,) — 4(u) for all
£ € H'(Q). In particular,

2'{ ¢p,,fdx—»2[ uf dx.
Q n

Thus J(u) < lim inf J(¢,) = i.
This completes the proof of all but the uniqueness part of the next theorem.

Theorem 3. Suppose that Q is an open subset of R* which is contained between
a pair of parallel hypersurfaces. If feRe L*(Q), then the functional
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J(W) = fq|VW|* + 2wfdx is continuous and bounded below on Re HY Q). It
achieves its minimum value at one and only one u € Re H'(Q).

PrOOF. The existence of a minimizer is proved above. If 4, and u, are both
minimizers, we prove equality by a convexity argumcnt In the next computa-
tion |- f| denotes the norm (§|Vu|? dx)*? on HYQ)

2
“1;“2 =(||“x|| :““z“ )+ %J; Vu, - Vu, dx,
u 12 + lu,ll?
%j Vuy Vi dx < Huy uyd < 22 WL %)
0

Thus J((u; + u;)/2) < (J(u,) + J(u,))/2. Since J(u) =ifor j= 1,2, and iis
the minimum value of J, we must have equality in the inequalities in (5).
Equality in the first implies that Vu, = aVu,; or Vu, = aVu, withae R,

From the second we conclude that |ju,| = lju,ll. Recall that the norm is
the L? norm of the gradient. Thus a =1 and therefore |fu, — u,|| =
VU, = Vuyll g3 = 0. O

The uniqueness proof above shows that J is a strictly convex function on
H'@Q).

It is natural that we had to enlarge the class of admissible functions in order
to produce a minimum. This is entirely analogous to enlarging the rationals
to the reals in order to gain completeness. Here the set of C' functions
vanishing at the boundary was completed in a norm which was suggested by
the estimates for the minimizing sequence. Whenever one admits more candi-
dates into competition there is 2 danger that there may be too many solutions.
The uniqueness in Theorem 3 is therefore reassuring.

To show that u solves the Dirichlet problem we would like to show that in
some sense Au = f and u|,q = 0. The first is not hard to justify. The second
is hidden in the fact that u € H'(). The latter relation will be examined in
more detail in §5.5. For the differential equation, we have a result analogous
to Proposition 5.2.2.

Proposition 4. Suppose that ue 2'(Q), fe L*(Q), and Vu € L*(Q). Then the
Jollowing are equivalent:

(i) Au = f in the sense of 2'().
(it) For all Y € 2(Q)

f Vu-Vy + fip dx = 0.
n

(ii) The identity in(2) holds for all y € HY(Q).

(iv) Forall ¢ € H'(Q), dJ(u + ep)/de|,aq = .
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Proor. To show that (i)<>(ii) note that for any ¢ € 2(Q), (-Au,¥) =
Y. <&u, 9> from the definition of distribution derivative. Since du € L?, we
find that

S —Au ) =I Vu-Vy + fif dx,
(1]

which yields the equivalence of (i) and (ii).

It is obvious that (iii) = (i1). That (1) = (2i) follows from the fact that the
integral in (ii) is continuous on H'(Q), and 2() is dense in H*(Q).

The equivalence of (iii) and (iv) follows from the fact that the derivative in
(iv) is equal to the integral in (in). 0

The direct method of the calculus of variations usually yields solutions
which satisfy the differential equations in a serise weaker than the classical

sense. Hnstoncally, this was one of the motivations for the idea of distribution
derivatives.

Corollary 5. If fe Re L3(Q), then there is exactly one u € Re H'(Q) such that
Au={

ProoF. Proposition 4 shows that the minimizer of Theorem 3 is such a
solution. Convcrscly, if u, and u; are solutions, then the difference w = u, — u,
‘belongs o H (), and part (iii) of Proposition 4 shows that [ Vw-Vy dx =0
for all y € H'(Q). Take ¢ = w to find that jw| =0so w = 0. 0

This ends an important first step in studying the Dirichlet problem. The
notion of solution has been extended and for this notion there is unique
solvability. It is natural to ask whether one gets classical solutions when the
data are sufficiently regular. For example, if Q is regular and fe C=(Q) we
will show that u e C°() and is a solution in the classical sense. The next
sections are devoted to showing just-how much can be done in the H'(Q)
context. The proof of the Regularity Theorems will be given in §5.8 and §5.9.
“The main results assert that u has two more derivatives than f at any point
x € Q when: thc dérivatives are measured inthe sense of H*.

Deﬁnmou. HueZ(Q).seN,andxe Q, then we say that u € H’( t) rfthere is
anr > 0so that for all |az| <s, D‘u € LY(Q ~ B,(x)).

The lntenor ﬁllnptic Regulamy ‘Theorem 5.9.2 asserts that if x € Q and
f € H¥(x), then. u € H**%(x). The Boufidary Regularity Theorem 5.9.3 asserts
that the same conclusion is true for x € 3Q, provided that Q <. R*is a smooth
embedded manifold with boundary. In either case, the Sobolev Embedding
.Theorem allows us to conclude that u is C* on an Q nenghborhood of x
provided that k < s — d/2. The C® regularity asserted in the prevxous para-
graph then follows. UL
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e 2 tre Wiltet L




188 $. The Dirichlet Problem

PROBLEMS

1. Use the steps from the Dircet Method of the Calculus of Variations to prove the
following abstract resulit:

Theorem. Suppose that H is a separable Hilbert space and J: H — R satisfies:
(i) inf J > —o0.
(it) J is sequentially lower semicontinuous with respect to weak convergence in H.
(i) 1imyyyeg J(W) = 00
Then there is a u € H such that J(u) S J(w) for all we H.

Discussion. To apply this result to the J in (1), one needs to verify (i), (i), (iii) which
is the heart of the argument presented in this section.

The weak compactness of the unit ball in Hilbert space is sometimes proved as a
corollary to the Banach—Alouglu Theorem asserting the weak-star compactness of the
unit ball in the dual of a Banach space. The latter result is proved using Tychonov's
Theorem and therefore uses a strong version of the axiom of choice. The next problem
presents a proof which uses minimal set-theoretic subtlety.

2. Suppose that {h,} is a bounded sequence in the separable Hilbert space J¢. Prove
that there is a weakly convergent subsequence by carrying out the following steps.
Choose an orthonormal basis e, , e, ... for X

(i) Prove that there is a subsequence {h,_ } with the property that for all j,
lim(e;, h,_) exists. Hint. Cantor diagonal process. Call the subsequence k,,, and
the limits a,.

(i) Prove that ZIajlz converges. Hint. Show that the sum of the first N terms is
the limit of (k.. Y. a,¢;) as m — oc. Estimate the limit using the Schwartz
inequality.

Since {q,} €12, define h = Y aje; € N,

(i) Prove that k,— h.

§5.4. Variations on the Theme

In this section the proof in §5.3 is generalized in several directions. The changes
are small and the domain of applicability of the method is shown to be very
wide. Among the extensions considered are more general second-order oper-
ators, more general boundary conditions including the Neumann problem,
and the Laplace-Beltrami operator on Riemannian manifolds.

First, the method is extended to symmetric divergence form operators
generalizing A. The key observation here is that the Dirichlet integral,
§1Vw|? dx, can be replaced by any other quadratic form which is equivalent
to the norm in H'(Q). Toward that end, let

a(v,v) = I Y a,/(x)é,vdv + a(x)v? dx. (1)
n

Assume that
a;; = ay and a all belong to L*(Q2: R), (2)
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Qu>0),(KeR xeQ), 3 a,x)i{; = nll’ 3)
The constant g in (3) is called an ellipticity constant.
a(u, u)'? is equivalent to the norm in Re H}(Q). 7))
Hypothesis (4) is equivalent to the existence of a ¢ > 0 such that

a(u, u) > c(I [Vu)? + u? dx) for all ue Re CP(Q). (5)
a

Condition (3) is necessary for the validity of (4) and then u = ¢ (Problem 1).
When inequality (5) is satisfied, a(u, u) is called coercive.

Proposition 1. Suppose that (2) and (3) are satisfied.

(i) If inf{a(x): x € Q} > O, then (4) is satisfied.
(i) If Q lies between two parallel hyperplanes at distance & < cc, then (4) is
satisfied so long as inf{a(x): x € Q} > — p/82.

Proor. The first assertion is immediate. For the second. choose u’' < uso that
infa > —pu’/6% Then for all u € C2(N)

J a(x)|u|? dx 2 (inf a)[jull}:q) 2 %uun{m, 2 — 1’ IVulli:q
0

the last inequality using Theorem 5.3.1. Then a(u. u) = (2 — u') |Vu|j? which,
together with Theorem 5.3.1, proves the desired estimate (5). O

ExaMPLE. If g,,and a and Q are fixed, then for sufficiently small 7, Q' = B,(x) c Q
satisfies hypothesis (4).

What was needed of the term 2f wf dxin J is that the linear map w— 2f wf dx
was continuous from Re H' to R. This was used in showing that J was
bounded from below, and in showing that J was lower semicontinuous with
respect to weak convergence in H'. Suppose that

I: Re H'(Q) — R is a linear and continuous map. (6)
Equivalently, l € 2°(Q) and
(3o). Vo e Re C(Q). U9l < cllolljiim (6)

Clearly (6) implies (6'). Conversely, if (6') is satisfied, then since C3’ in dense in
H', 1 has a unique extension satisfying (6).
Thc proof of the last section yields the following result.

Theorem 2. Under hypotheses (1), (2), (4), and (6) the functional J(v) = a(v, v) +
2l(v) is a strictly convex continuous function from Re H'(Q) to R. J is bounded
below and achieves its infimum at a unique ueRe H:. The minimizing u is
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characterized by .
(VoeRe H'(Q),  a(u, ¢) + l{p) =0. Y]

The above theorem is valid in an arbitrary open set. No regularity or bounded-
ness is required.

The left-hand side of (7) is equal to dJ(u + ep)/del,.o- Equations derived
by setting such directional derivatives equal to zero at stationary pomts of a
functional J are often called Euler equations. The interpretation in terms of
differential equations is the following exact analogue of Proposition 5.3.3.

Proposition 3. The minimizer u in Theorem 1 is the unique u € Re HY(Q) such
that
Lu =Y d{a,(x)éu) — a(x)u=1 in Z'(Q). (8)

Note that for u € H'(Q), a;c;u is square integrable on Q so the distribution
derivative ¢;(a;;¢;u) is meaningful. On the other hand, the individual terms in
the expression g, ,6 it + (¢,a,;)¢;u from the product rule do not have a simple
interpretation unless éa,; is square integrable. It is wise to leave L in the
divergence form (8). The next proposition shows that L is not only well defined
but continuous.

Proposition 4. If O(x, D)u = Y ¢,(q,(x)u) with q; € L™ (), then Q is a continuous
map from L¥(Q) to the dual of H'(Q).

Proor. For u € L%(Q), ¥ € CF(Q) compute
(Qu, ¥y = — Y {qjx)u, &y) = — zjqi(x)wx)a,w(x) dx

1<@p, ¥>| < z flollcs "‘U“L-"ej'ﬁ"u S cllelaldlige.
Since the set of § are dense in H*(Q), the result follows. 0

This proposition implies that L is a continuous map of H'(Q) to Re HY(QY
whenever (2) is satisfied.

Corqllary 8. The map L in (8) is an isomorphism from Re HY(Q) to the dual
Re H'(Q).

ProoF. We have established that L is a continuous bijection between these
spaces. To prove that the inverse is continuous is equivalent to ﬁndmg an
estimate for the H' (Q) norm of the solution of Lu = [ in terms of the H! Q)Y
norm of I. To do this, takc @ = u in the Euler equation (5) to find that

S o 0w ) S cllullg Bl N
Smce a(u; u)sis eqmvaleh% 19 the square of the H* norm, this shows that
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lull g < cllf Nesinys )

which is equivalent to the continuity of the inverse of L. a

One could have concluded that L™ is continuous by applying the Open
Mapping Theorem. It is a general principle that if one has done so much
analysis that an inequality follows by applying the Baire Category Theorem,
then one has actually proved the inequality earlier. In our case, it is the lower
bound (5.2.2) which is an alias for (9).

It is also useful to recall the derivation of (9) since one step is hidden in
Proposition 3. What one does is apply Lu = to u. An integration by parts
and (5) yields the estimate. Briefly, the estimate is proved by multiplying the
equation by u, then integrating by parts. This is an example of the energy
method with multiplier w

In analogy with the Lax duality proved in Problem 3.5.1, we make the

Definition. H~'(Q) is the dual of H'(Q). That is, H~*() s the set of distribu-
tions | € 2'(Q) satisfying (6") for all ¢ € CF ().

The Riesz Representation Theorem gives an isometry between HY(Q) and
H~'(Q). In particular, H™() is a separable Hilbert space.

Under the hypotheses which imply coerciveness, Corollary 5 asserts that
L: Re H' — Re H™! is an isomorphism. Estimate (9) takes the elegant form

Nulgiqy < cllLully-1q)- (10)

Such an estimate giving a gain of two derivatives is typical of elliptic equations
(recall Proposition 2.4.5 and contrast Problem 1.1.4).

The technique for the Dirichlet problem also solves a variety of other elliptic
boundary value problems which arise in applications. As an example, conside
heat flow in Q with a constant source f(x) and insulated boundary. The
equations of motion take the form

v, = vAr + f(x), t,xe R, x Q (1)

ov

P 0 ateQ and (0, -) given. (12)
The Neumann boundary condition (12) asserts that there is no flow of heat
through the boundary. This is the meaning of perfect insulation. One finds, as
t — oc, v(t, x) — u(x), a solution to the Neumann problem

vAu=f inQ, ‘;—'-':.-.o at o9). (13)

These conditions are insufficient to determine u. Any two solutions differ by
a constant function. The constants are the elements of the null space of A with
Neumann boundary conditions. To complete the determination of u use the
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conservation of energy
J‘v(t, x) dx is independent of time (14)

for solution of (11), (12). To prove this, integrate the equation over Q and note
that fo Av dx = [,q0v/0n do = 0, thanks to (12). Thus fvdx = fv,dx =0
proving (14). Therefore, [q u(x) dx = fqu(0, x) dx. This additional condition
together with (13) identifies u. Here the initial condition contributes to the
determination of the steady state u. This is in contrast to heat flow in a domain
whose boundary is kept at a time-independent temperature.

Corresponding to the fact that there is nonuniqueness of solutions to (13)
there is also nonexistence. Integrating the equation over Q yields

.Lf(x)dxgvj‘nAudx= vJ‘m:—:do:O'

which is a necessary condition on f for solvability.
If one attempted to solve (11) by Laplace transform in time

Lr(r) = J’:c e~ "u(t) dt,

0
one finds the boundary value problem

(t — vA)Zr = f(x) inQ ?(zv) =0 atcf.

Fort € ]0, oo[ (more generally t € C\] - oc, 0]), this is uniquely solvable. The
key is to show the solvability of the Neumann probiem

“-0 onéq (15)
con

where v> 0and ae L*(2: R) and inf a(x) & x > 0. The solution is optaincd
by the variational method with a basic Hilbert space different from H'(Q).

(a(x) - vAJu=0 inQ

Definition. If Q = R? is open, then the Sobolev space H'(Q) is the set of
distributions u € 2'(Q) such that for |B| < 1. ¢%u € L3(Q).

Proposition 6. H'(Q) is a separable Hilbert space with norm given by
lu“]zfl(()) = J. |VUP + |l¢|z dx.
n

Proor. To verify completeness suppose that u, is a Cauchy sequence. Then,
for all | B| < 1, 0%u is a Cauchy sequence in L3(S2). By completeness of L2, 8%u,
converges in L(Q) to a limit g, for all 8] < 1.

Since L2 convergence implies convergence in the sense of distributions and
d is continuous for distribution convergence, %g, = #* lim u, = lim &’u, =
gy € L¥(Q). Thus g, belongs to H'(Q2) and by construction u, converges to g,
in H'(Q) proving completeness.
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The map u—s(u, 8,4, ..., d,u) is an isometry from H'(Q) into L*(Q)**. The
separability of the target implies the separability of the source. O

The Neumann problem (1) is solved by minimizing
J(u) = I v|Vul? + a(x)u? — 2f(x)u(x) dx, (16)
o

where the minimum is taken over all u € Re H(R2). The key fact in construct-
ing a minimum is that the bilinear form

a(u, u) = J‘ viVuj? + a(x)u® dx
n

defines a normequivalent to the H' () norm. This is the requisite coerciveness.
Even a trusting reader should be skeptical that this minimum solves the

boundary value problem since the boundary condition appears nowhere in

the description. If the minimum is achieved at v, the Euler equations show that

j wWe Vv + a(x)pr — ¢fdx =0 forall ¢ e H'(Q). (17)
a

Choosing ¢ € C5’(Q) shows that the differential equation is satisfied in the
sense of distributions. However, the boundary condition év/én = 0 is not
hidden in the condition that v € H'(Q). For example, the restriction of an
arbitrary member of C=(R*) to Q lies in the space H'(Q) and in no sense
satisfies homogeneous Neumann conditions.

However, the cquation of variation, (17), holds for a large class of test
functions ¢. For the Dirichlet problem, Proposition 5.3.4 showed that the
equation of variation was satisfied if and only if it was satisfied for all ¢ € CF ().
This is not the case for the Neumann problem. To see the difference suppose
that Q is smooth and v € C2({Qd) satisfies (17). An integration by parts yields

I¢(—vAv+a(x)v-—¢f)dx+J‘ @da-o forall ¢ e H'(Q)

(18)

For ¢ € C3’(Q) the boundary term vanishes and we recover the diflerential
equauon, (a — vA)v = £, This implies that the integral over Q vanishes for all
¢ € H'(Q). Thus the boundary mtegral vanishes for all ¢ € H!(Q), in particu-
lar, for all @ € C*(Q). Then @) is an arbitrary smooth function on the
boundary of Q and it follows that dv/on = 0 on the boundary. For irregular
sets £2 or nonsmooth v the equation of variation gives a weak sense to the
homogeneous Neumann boundary condition which is still strong enough to
imply uniqueness. When the data are regular the solutions are regular and
satisfy the boundary condition in the classical sense. Elliptic regularity of the
sort fe H(x)= ue H***(x) can be proved by the same methods as those
employed for the Dirichlet problem in §5.8 and §5.9. Boundary conditions
which are hidden in the equation of variation, rather than being imposed
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directly on the admissible functions in a variational argument, are called
natural boundary conditions.

Another example amenable to analysis as above is the Laplace-Beltrami
operator. Suppose that M is a compact smooth Riemannian manifold. We use
the standard notation T (M) for the tangent space to M at x. It is identified
with equivalence classes of curves y(t) with 7(0) = x with y, ~ y, if and only
if their first derivatives are equal in any coordinate system. The dual space to
T.(M) is denoted T,*(M) and is the fiber of the cotangent bundle T*(M). For
a ¢ € C*(M : R)theextenor derivative do is a section of the cotangent bundle.
The Riemannian metric on T, (M) induces a correspondence between T, (M)
and T.*(M) and thereby a metric on T.*(M). Thus if w € T.*(M), its length |w|
is well defined as is the scalar product (w, &) of two elements of T,*(M). The
Laplace-Beltrami operator A,, is the differential operator associated to the
Dirichlet integral D(¢) = {,, 1d@|? dV, where |do(x)| is the length of d¢(x) and
dV is the Riemannian volume element on M. Thus, for ¢ e CF(M),
Ay € C3(M)is defined by the relation

’ I VAo de= - J dy(x), dp(x)) dv = }(d,de)D(@ + &)l (0.
I M

Computing in local coordinates shows that A, is a second-order differential
operator like those considered in this section. H!(M) is defined as the set of
elements of u € L?(M) such that in any local coordinates, éu/éx; € L2.. If

is a finite partition of unity subordinate to a coordinate atlas (L B then
H'(M) is a Hilbert space with norm

"““ul(u)-z Z IIG’((%u) ﬂ))"l.’(ll‘)

lsisl
Then the functional

J‘ u(x)? + |du(x)|* dV
™

is coercive, that is, deftnes a norm equivalent to the norm on H!(M), which
shows that 1 — A, is an isomorphism of H!(M)to H'(M)Y. If Qc M is a
bounded open set and H'(Q) is defined to be the closure of Cy(Q) in H'(M),
then the functional D(u) is_ coercive on H'() and one finds that A,, is an
isomorphism of H'(Q) to H'(Q)'. If fe C*(M) and x € M, we can take Q to
be a small neighborhood of x and thereby solve the equation Ayu = f on a
neighborhood of x. In §5.8 we will show that u € C*(Q). This local solvability
of A, is a crucial step in the construction of isothermal coordinates on
Riemannian 2-manifolds. This in turn is how they are given a complex struc-
ture and are identified as Riemann surfaces.

In the same vein, the Hodge Theory is associated with the quadratic form

I |[do(x)i? + |[d*w(x)] dt,
M
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where d: A¥(M) ~ A¥*1(M) is the exterior derivative and d*: A**!(M) — AY(M)
(and therefore A* — A*~1) is the transposed differential operator based on the
natural L? scalar products in A*(M) and A**'(M). The associated second-
order differential operator from A* to itself is equal to d* d + dd* and is called
the Hodge Laplacian. The difficult part of the classical Hodge Theorem is an
Elliptic Regularity Theorem which can be proved as in §5.8.

PROBLEMS

1. Prove that if inequality (5) holds, then (4) must be satisficd and ¢ < inf{z a,(x)§§;:
x € Qand £ € R’ with [¢] = 1}. Hint. Consider highly oscillatory test functions e"*¢
with A — oo localized by a cutoff x{n(x — x)), with n = n(4) tending to infinity.

The existence theorems of the last two sections can be proved using the Riesz
Representation Thearem for elements of the dual of 2 Hibert space. That theorem is
proved by a variational argument, and one can view what we have done as repeating
the proof.

This is not a wasted exercise since there are many other problems which can be
attacked by the Direct Method of the Caiculus of Variations, including many noalinear
problems. Problem 2 describes the Riesz Representation Theorem proof. We take
the opportunity to give a generalization to complex equations and solutions. The
hypotheses on the coefficients are

a,=d; and a20 belongto L*(Q) (19)
In this case
a(v,v) = j Z a; ,(x)E,.cc",_v + a(x)|r|? dx, (20)
o

and we assume coercivity, that is
a(v, v)'? is equivalent to the norm in H Q). 21)

The Riesz Representation Theorem then shows that every continuous linear functional
on H'(Q) is of the form a(-, u) for appropnate u € H'().
As in Problem 1, (21) can hold only if there is a 4 > 0 such that

Ya )& 2plé?.  forall xefQand¢eC’ (22)

If the a,; are real and satisfy (3), then this holds since in that case one has
2 au(X)C:E; = Z a;(x)((Re $)(Re (1) + (Im &,)(Im ) (23)

In the real case, if L is a second order and elliptic, then cither L or — L satisfies (3). In
the complex case, the analogous result is not true, for example, L = (3, + id,)* is elliptic,
but neither L nor — L is positive in the sense of (22).

2. Use the Riesz Representation Theorem to show that if L satisfies (19), (20),(21), then
L is an isomorphism of H'(Q) to H™'(Q). Warning. Beware of complex conjugates.

3. Prove
() If Q =10, b{, then le H™Y(Q) if and only if there is a u € L?(Q) such that
| = du/dx (derivative in the sense of distributions).
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(ii) Let I = kernel(d/dx) be the linear subspace of constant functions in L. Prove
that the map u~— du/dx is an isomorphism of L2(J0, bD/T to H'(30, b))

4. Prove that if Q < R is bounded and open, then /e H™' if and only if there are
functions f; € L*(Q)such thatu = Y J, ;. Is this an isomorphism of L?(Q)/constants
to H-'(Q)?

5. CF(Q) < H™'(Q) by the usual identification ¢ — [

) = I ¥(x)e(x) dx forall ye H Q).
0

Prove that C(Q) is dense in H™'(Q).

6. Show that the natural boundary condition associated to the vanational problem
minimize over v € Re H'(Q): J Y a,(x)évép + v dx
Q

is
Z. a,(x)n(x)C;v(x) = 0, (n,,....n,) = outward conormal to Q2.  (24)
DiscussioN. The derivative on the left is called the normal derivative associated to

the operator with principal symbol } a,;¢;;. It arises in a variety of problems in
geometry and mechanics.

The next problem treats the so-called third boundary value problem which has the
Robin boundary condition

c:_u + 2(x)u = 0.
cn

One origin is the study of heat flow in a region Q surrounded by a temperature bath
at temperature 7. The outward heat flux at the boundary is proportional to the
difference between the temperature at the boundary and T

L a(v—-T) 2>0.
cn
Thus v — T satisfies the heat equation in Q and a homogeneous Robin condition at
the boundary. Equilibrium solutions with a source f satisfy
Au=f in and —+au=0 onéifd 29)

cn

This is equivalent to the variational problem

minimize J(u) aj {Vu|? + 2uf dx + j au? do, ue HY ().
o x

The fact that u| 5, makes sense and is square integrable for u € H'(Q) is called a Trace
Theorem. A model is Theorem 5.5.3.

7. Prove that if Q is regular and u € C3(Q) satisfies J(u) < J(w) for all w € C*()), then
u is a solution of (25).
Discussion. The Robin condition is a natural boundary condition associated to the
functional J on H'(Q2). The variationsl approach to a variety of elliptic boundary
value problems can be found in the books of Agmon [A] and Lions [Lio].




§5.5. H' and the Dirichlet Boundary Condition 197

§5.5. H! and the Dirichlet Boundary Condition

Our solutions of the Dirichiet problem satisfy the differential equation in the
sense of distributions and the homogeneous Dirichlet boundary condition in
the sense that « € H'(Q). In this section we examine more closcly the structure
of H'. In the process, we prove several ways in which the condition ulx =0
is satisfied.

Theorem 1. If 8 <. R? is a compact smooth submanifold with boundary, then
H'(Q) is equal to the set of allu e H 1(R¥) with support in QL.

ProoF. I u € H'(Q), choose u, € CZ (@) with u, -+ u in H'(R?). Then u, van-
ishes on R\ and u, converges to u in 2'(R). It follows that u vanishes on
R\Q, sosuppuc .

Conversely, if u e H'(R?*) with supp(u) < Q and ¢ > 0, we will construct
u, € H*'(R*) with supp(u,) = Q and {u — u iy re <& Then, for n sufficiently
small, j, s u, € Cg'(Q) and lju — j,* Ul i rey < &

To construct u, we push u inward using the flow of a vector field. Choose
a smooth compactly supported vector field V on R* which is transverse to ¢QQ
and points out of Q at points of ¢Q. Let @, be the low generated by the vector
field V. Since V is compactly supported the flow is globally defined and 9, is
equal to the identity map outside supp V.

The transversality hypothesis implies that there is a ¢ > 0 such that for
0<t <1, ()< {xeQdist(x, 2Q) = ct}. The function u, is defined to be
u o ®, for ¢ small positive so supp(u o ®,) < ®_,(Q). It suffices to show that
u o ®, converges to u in H'(R?). 0O

Lemma 2. Suppose that V is a smooth compacily supported vector field on R¢
and ®, is the flow generated by V. For any w € L}(R%),wo ®,— win L}R*) as
t -0 .

Proor. For w belonging to the dense subset Co(RY) © L2(R?), the conclusion
is immediate. In fact, one has uniform convergence and support contained in
a compact set independentof t € [ -1, 1].

The maps w — w o ®, are lincar maps. To prove the lemma it is sufficient
to prove that for |t] <1 the maps are uniformly bounded in Hom(L2(R*)).
Compute for w € Co(R?) using the change of variable y = ®,(x)

L‘ Iw o ®(x)|2 dx = J“‘ |w(y)|? det DO_(y) dy,

where we note that det D®, > Osince det D®, is continuousin , nonvanishing,
and equal to 1 at ¢ = 0. The uniform boundedness is a consequence of the fact
that det D®_(y) is bounded independent of y € Rlandte[—1.1). O

For diffeomorphisms @ of R?, which equal the identity outside a compact
set, the map S (R*) 3 u — u o ® extends uniquely to a sequentially continuous
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map of #'(R') to itself. The transpose of the map is given by
v — (det D®)~'(v o @) and takes & to itself. Thus, for u € &' (R¥), uo ® is
givenby {u o ®, ¥) = (u, (det D®)™' (Y o ®~!)). The chain rule for the partial
derivatives of u o @ follows by continuity from its validity on the sequentially
dense subset & < 5. Therefore

aj(“ o) = Z ((Gu) o @) &

o%," ®=(D,...,0,) (1)

$0 luo @l < cllully: and it follows that o ® maps H'(R) to itself. Lemma
2 together with formula (1) imply that u o ®, converges touin H! (R%) ast — 0.
This completes the proof of Theorem 1. O

When d =1, the elements of H'(RY) are continuous functions. Thus
supp u < Q implies that u,, = 0. When d > 1, u does not have well-defined
values at points. However, u|, is 2 well-defined element of 2'(cQ) and for
u € H*(Q) this distribution vanishes.

Theorem 3. Suppose that £ = R* is an smooth embedded compact d — 1 dimen-
sional manifold. Then the map CZ(Q) 3 ¢ — ¢|; = y(¢) has a unique contin-
uous extension to a linear map of H'(R*) to L*(X). In addition, there is a constant
¢ = ¢(Z) such that for all ue H'(RY).

170 Ea < ol ana V6l Lagne + 1%l F2pe) ()

The norm in L*(Z) is that with respect to any smooth volume element, for
example, the volume element do induced by the Euclidean metric in R*.

For u € H'(R?) the value of y(u) is called the trace of uon X and is also
denoted u(;. A more careful estimate shows that u|, belongs to the fractional
Sobolev space H'3(Z) (see Hormander, [H2, Vol. I]).

PROOF OF THEOREM 3. Since CE(R*) is dense in H!(R?), it suffices to prove the
estimate (2) for clements ¥ of CE(RY).

Choose a compactly supported smooth vector field, ¥, which is transverse
to Z. Let @, be the flow generated by V. Then there is an £ > O such that the
map 7: (¢, 0)— ®(o) is a diffeomorphism from ] — ¢, ¢[ x = to an R* neighbor-
hood, #, of £. The Euclidean volume element in ¥ is equal to w(t, 6) dt do
with w smooth on ]—¢,¢[ x X.

Choose x(t)e Cy(]—e e[) with x(0) = 1. Integrate 8,(x(|¢ o n|?) over
-6t <0tofind

W20, o) = J.;z.n/q2 dt + 2 Re J WV, dt.

Integrate do and then apply the Schwartz inequality in the second term to
prove (2) for . O

The next result shows that the traces at 4Q of elements of H 1(Q) vanish. In
this sense they satisfy the Dirichlet boundary condition.
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Corollary 4. If Q is as in Theorem | and u € H '(Q), then u|;q = 0.

ProoF. Choose u, € CZ () converging to u in H'(R?). Then u,| o converges
t0 u| q in L23(R). The result follows since u,|q = 0. 0O

The traces defined in the previous theorem enter in the formula for inte-
gration by parts.

Theorem 5. Suppose that Q is as in Theorem 1. Then, for all u. v € H'(R*) and
1<j<d,

J. ucp dx = —-'f vé,udx*-f uv dx, A-“Ad/;,-/\...dx,. (3)
0 0 Q

The integrand of the last term is u| ;qt}:q € L' (¢€2). The 5;, means thag this

factor is omitted. The formula is often written noticingthat dx, A -+ A dx; A

..dx, = n; do, where do is the element of Euclidean area on ¢Q and (n,, ..., n,)
is the Euclidean outward unit normal to Q.

Proor. Formula (3) is true for u, v in CF(R*) which is a dense subset of H' (R¢).
Thanks to Theorem 4, both sides of (3) define continuous bilinear forms on
H)(RY) x H'(R?). The identity follows since continuous functions which are
equal on a dense subset are everywhere equal. O

The next result expresses a sense in which u vanishes at the boundary
without passing through the intermediary of traces at the boundary. It asserts
that the average value of |u|? in a band of width ¢ about éQ tends to zero withe.

Theorem 6. Suppose that Q isas in Theorem 1 and 7, = {x € Q. dist(x, Q) < £}.
Then there is a constant ¢ and ¢, > 0 so that, for all u e H'(Q) and & < ¢,

J‘ lul? dx < ce? | Vulls 5. (4)
s

Proor. Introduce W: R x dQ — R? by W(¢, 6) = ¢ + tn(c) where n(o) is the
unit outward normal to dQ2. Then there is an & > 0 so that ¥ is a diffeomor-
phism of J—¢,, &[ x ¢Q to a neighborhood of 3Q and ¢ is the distance of
¥(t, 6) to .

Itis sufficient to prove (4) for ¢ in thedense subset Co°(Q2). Fort € [ —~¢4/2, 0]
and such ¢ integrate J,(¢ o '¥) over [t, 0] to find

0 0 172
j %&Lsmm( I%Fa). (5)
[ ] [ 4

where the last estimate uses the Schwartz inequality.

lo(t, o)l =
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Square (5) and integrate do to find

I lo(t, )12 do < clt] 1V © Wlf2q-q.01xve0)-
0

For any 0 < ¢ < £,/2, integrate dt over [—¢, 0] to find

0
I I lo(t. 0)| dt do < c'e? IV © WiiEa-c. 00 x 2m (6)
-t J
and the theorem follows. O

Since the volume of J, is of order ¢ and the integral of u? over 7, is o(c?),
the theorem shows that the average of |u|* over 7, is o(¢), which is best possible
(Problem 2).

Corollary 7. With Q and F, as above and u € H'Y(Q)

o 2 gy = -
I(J')_[ u|* dx = o(g) as ¢—0+. (7)

PROBLEMS

1. Suppose that @ <. R is a smooth compact submanifold with boundary and

ue C*(RY). Let v = uyq€ L* *(Q). Prove that ¢ € H'(R*) if and only if u| :q = 0. In
this case, show that ¢ € H'(Q).

Discussion. This is an H' version of Lemma 5.3.2.

™

Show that the o(¢) in Corollary 7 cannot be strengthened to O{e*) for any x > 1.
Hint. Consider Q= ]0,1{ =R and u = x"?(In x)” near x =0 with p suitably
chosen.

3. Let ¢, o be the coordinates on a tubular neighborhood of ¢Q as in the proof of
Theorem 3. Prove that there isan ¢ > 0 such that for u € H'(R?) the map t —(u o ¥)
(t. -) is continuous on [ —¢, £] with values in L*(¢Q).
Discussion. This result shows that the traces of u on the hypersurfaces “parallel”
to Q2 depend continuously on the distance to ¢Qd.

§5.6. The Fredholm Alternative

In §5.3 and §54 we proved unique solvability of the Dirichlet problem for
coercive divergence form operators, Y d;a #x)¢; + a(x). In this section we show
how this can be used to study operators which are not in divergence form, for
cxample, A + J/0x,, and operators which are not coercive, for example, A + 4
for i large positive. The final results assert that the null spaces are finite

dimensional and the ranges are equal to the annihilators of the null spaces of
the transposed operators.
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Suppose that Q is a bounded open set and consider a second-order operator

Lix,d) =Y a,(x)2,8+ Y aj(x)é; + a(x), (1)

a;;, a;, a belong to C*(€2: R) and a;; = a, (2)

Au>0),(VxeRieR’), T a,;(x):¢$ 2 mlél (3)

VaeN%), 8%ay a;, a) e L*(Q). (4)
The transposed operator is

L'(x,dw = Y 8,0/a,(x)v) + Y —da;(x)t) + a(x)v. (5)

Note that to form L' the coeflicients must be differentiable. L is of divergence

form precisely when L = L', that is, when L is symmetric. For all o, ¢ € C3°(Q)
we have Green’s identity

J oLy —yl'¢dx =0.
4]

Both L and L' are continuous maps of H'Y(Q) to H™'(Q) and Green's identity
extends by continuity to all ¢, nﬁ e H\(Q) if one interprets the integral of Ly

times ¢ as the value of Ly € H'{Q) at ¢ € H' and similarly for the second
term. Thus

Ly, @) = (L'@,¥) forall o, ¢ e H' Q). (6)

In particular, if ¢ belongs to the kernel of L', then ¢ is annihilated by every
element of the range of L. The goal of this section is to show that this is an
exact description, that is, the range of L is equal to the set of elements of H™*(Q)
which annihilate the kernel of L'. At the same time, we show that kernel(L.)
and kernel(L') are finite dimensional with the same dimension. In particular,
L is surjective if and only if it is injective. The Elliptic Regularity Theorems
of §5.9 show that the kernels belong to C*(Q) and that when Q is regular the
kernels lie in C*(Q2).

ExaMpLES. 1. Q = ]J0, n{ =« Rand L d?/dx? — i. Here L = L' and the ker-
nel is empty except when 1= —n?, n=1,2,.... In that case the kernel is
spanned by sin(nx). The operator is an :somorphnsm of H' to H™" except for
those values of 4. The operator satisfies the coerciveness inequality (5.4.5) if
and only if i > ~1, so one has an isomorphism in many noncoercive cases.
When 4 = ~n?, the range of L is the set of elements f of H™'(Q) such that
({, sin(nx)) = 0. In this case solutions are nonunique, if « is a solution then
so is u + c(sin(nx)) for any ¢ € C. The eigenvectors sin(nx) for the eigenvalues
A= —n? form the basis for Fourier sine series. Note that the eigenfunctions
are determined by the eigenvalue equation d*u/¢x? = Au and the boundary

condition u|,y = 0. Analogous eigenfunction expansions for general sym-
metric L are discussed in §5.7.

2. L= A+ ¥ afx)3. In§5.11 we use the maximum principle to show that
the kernel of L is empty. This implies that the kernel of L' is empty and we
find that L is an isomorphism for any real valued a,.
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One of the advantages of considering inhomogeneous equations with
homogeneous boundary conditions is that thc Fredholm alternative has a
simple description in this context.

The proof of the basic result is not hard. The idea is to consider L as a
perturbation of the symmetric operator

L,= -1+ éayx)é,.

Then L, is equal to its own transpose and is coercive. Thus L, is an isomor-
phism of HY(Q) to H™}(Q). In addition

L=L,+Q(x @),

where Q is a differential operator of order 1 with smooth coeflicients. Since Q
is lower order, i is in a sense small compared to L,.
To solve the Dirichlet problem

Lu=fe H'(Q) with ueHYQ), (7

we take as a first approx:matxon the solution with L replaced by L,. That is.
write u = v + w where w e H'(Q) and L.w = f. The equation for v € H'(Q) is
then (L + 0)(v + w) = f which slmphﬁcs to (L, + Q)v = ~Qw. Applymg
(L,)~! shows that this equationin H*(Q)is equivalent toan equation in H! (Y

(I +(L,)"Q)k = —(L,)' QL)Y (8)

To summarize, u € H'(Q) solves (2) if and only if u—(L,)}f =ve H'(Q
solves (8).

Turning to equation (8) note that Proposition 5.4.5 shows that Q is a
contmuous map of L3(Q) to H™}(Q), so (L,)™"Q is a bounded linear map of

L3(Q) to H(Q). If v e L*(Q) solves (8), then v = —(L,)"'Q(v + w) belongs to
H*(Q). Thus it suffices to study solutions v to (8) in the space L3(Q).

The key observation is that (L,)"'Q is a smoothing operator. It maps L3to
H' so it gains one derivative. This implies that it is a compact operator on
L*(Q) thanks to the following criterion of Rellich. Recall that a linear map

from one Banach space to another is called compact if the image of any
bounded set is precompact.

Theorem 1(Rellich Compactness Theorem). If s > t, ¢ € R, and K is a compacti
subset of R?, then

{u € H'(RY) : llull o) < ¢ and supp(u) < K} 9)
is precompact in H'(RY).
EXAMPLE. The case s=1,1=0, and K = Q shows that bounded sets in

H 1(Q) are precompact m L%(Q). This shows that bounded linear maps (e.g.
(L,)"'Q) from L2(Q) to H'(Q) are compact operators from L2(R) to itself,

PRrOOF OF THEOREM 1. Suppose that u, is a sequence in the set (9). We must
show that u, has a subsequence which converges in H'(R?). Since the u, are
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bounded in H*(R‘), we may pass to a subsequence v, = yy,, such that ¢,
converges weakly in H*(R?) to a limit v.

Choose a ¢ € C2(R*) with ¢ identically equal to 1 on a neighborhood of
K. Then ¢v, = v, and compute

Fvu(&) = {ov,, (2n)" ey = 2r)*{v,, pe %),

Now @e~*¢ belongs to H™*(R?) with norm bounded by a multiple of (£)*
(exercise). Thus [6,(¢)| < c{(&)™ and the weak convergence of the v, implies
that £,(¢) = &(¢) for all ¢ € R?. Lebesgue's Dominated Convergence Theorem
implies that forany R >0

J 16,(E) — E(E)P<EY dE —~ 0.
KisR
On the other hand,

j' 12,(8) = EE)CEHH dg < J 1(S) — BEIPCEY? KGN dS
RI>R

I:|>R
< (1 + R sup llg, — tll o rey

since (&)™ < (1 + R*)*"*2 when |{j = R. The sup is bounded thanks 1o
the weak convergence v, — v.

Givene > Owe may choose R > Oso that theintegralover |§| > R is smaller
than ¢/2 for all n. Then choose N so that for n > N the integral over || < R
is less than ¢/2. Then for n > N the H'(R¢) norm of ¢, — v is less than or equal
to & This proves that v, converges to v in H'(R?). a

Theorem 2 (Fredholm Alternative for the Dirichlet Problem). The mapping
L: H'(Q) = H™'(Q) has finite-dimensional kerne| and closed range equal to the
annihilator of kernel(L'). Moreover, kernel(L) and kernel(L') have the same
dimension.

It follows that the index of L; which is equal to the difference of the
codimension of the range of L and the dimension of kernel of L, is equal to
zero.

ProoF Of THEOREM 2. Let K = (L,)'Q so that K is a compact operator on
L?(Q). The strategy is simply to study the equation (I + K)v = g and use the
fact (see (8)) that Lu = f is equivalent to (I + K)v = g with g = —K(L,)™'f
andu=v+(L,)".

For I + K we use the Fredholm Alternative for Compact Operators which
was invented by Fredholm to solve the Dirichlet problem by the method of
integral equations. Thus there is justice in using the result to solve the Dirichlet
problem, albeit by a different method. O

Theorem 3 (Fredholm/Riesz Theory of Compact Operators). If B is a Banach
space and K: B — B is a compact linear transformation then:
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(i) the kernel of I + K is finite dimensional,
(ii) the range of 1 + K is equal to the annihilator of kernel(l + K'),
(1) 1 + K and I + K' have kernels of equal dimension.

Note that K* is a map of B’ to itself. This result is proved in most functional
analysis texts, for example, Reed and Simon [RS] or Riesz and Sz-Nagy
[RSzN].

To apply this result we must identify the transpose of K = L;! Q. Formalily,
compute

Kt - (L;IQ)t = Qt(L;l)t = Q'(L:)-l - Q'L;‘, (10)

the last since L, is equal to its transpose. As L, and Q are unbounded operators
and there are at least two dualities involved in this computation (that between
H' and H™' and between L%(Q) and itself) we present a careful derivation.

Lemma 4. /dentify the dual of L*(Q) with L*(Q) by the mapping L}(Q) 3 ¢ —
M(p) € L} (Q) by M(@)(¥) = [q¥@ dx Then K' = MQ'(L,)'M™".

Note that the right-hand side is a continuous map of L(Q) to itsell, as it
should be. Note also that the identification of L? with its dual is linear rather
than antilinear as is the case with the standard Riesz Representation Theorem.
The difference is a complex conjugate in the integral. The formula for K* is
identical with that derived in (10) except that the identification M is made
explicit.

ProOF OF LEMMA 4. The goal is to show that for all fe L}*(Q)and | € L}(Q)
IKf) = (MQYL,)'M~D(f). (1)

It suffices to prove (11) for f, | chosen from dense subsets of L3(Q) and its dual.
Supposc that fe C3°(Q) and | = Mg with g € C3(Q). Then the left-hand side
is equal to fq gQ*(L,)""f dx.

Since both g and (L,)!f belong to H'(Q) an integration by parts shows
that the left-hand side is equal to jn(Qg)(L )" ‘fdt

Letw =(L,)""f and v = (L,)*Qg. both in H*(Q). The integral is then equal

o fa(L,0)((L,)"*f)dx = (L,b,(L,)"'f>. Green's identity (6) for L, = L
shows that this is equal to

W LL)YD> =<0, > =UL,)"'Qg.f) = jﬂl- )" Qgdx.  (12)
The last expressnon in (12) is equal to the right-hand side of (11). O

Returning to the proof of Theorem 2 we identify the kernels of I + K and
I + K. The equivalence of Lu = fand (I + K)¢v = g from the first paragraph
of the proof of Theorem 2 shows that ker(! + K) = ker(L).

Next note that [ e ker(/ + K')if and only if | = Mh with (I + Q'L_*)h = 0.
Letv = L;!h, to see that this holds if and only if (L, + Q")v = 0. The operator
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on the left is equal to L' so we have shown that the mapping L, ‘M™!is an
isomorphism from ker(/ + K*) to ker(L').

Since dim ker(l + K*) = dim ker(f + K) < oo the above identifications
show that ker(L) and ker(L') have equal finite dimensions.

Finally, note that f€ Rg(L)if and only if —KL_" f is in the range of ] + K
hence if and only if KL f is annihilated by ker(I + K*). By the above calcula-
tion ker(J + K*) = ML (ker L'). Thus f is in the range of L if and only if

I (KL f){(L,v)dx =0 for all v eker(L'). (13)
n

Note that L.t = —Q' since v € ker(L') and therefore that L,ve L2 Since
K = L;'(Q, Green's identity (6) for L, shows that (13) holds if and only if

I (QL;'f)vdx =0  forall veker(L')
n

Since v € H'(Q), an integration by parts yields
j (QL.' f)vdx = J L' fQvdx = —J L' fL,vdx
0 o 0

the last equality since v e ker(L'). Relation (6) shows that the right-hand side

is equal to —fq fv dx. Thus f is in the range of L if and only if this integral
vanishes for all v € ker(L') which is the desired result. O

ExampLE. For p sufficiently large and positive, the operators L-pandL'-p
are isomorphisms of H'(Q) to H™'(Q).

Thanks to the Fredholm Alternative. it suffices to prove that ker(L. — p) =

{0}. Since L is real, it suffices to show that if u is a real-valued element in
ker(L —p) then u = 0.

For such a u one has {u, (p — L)u) = 0. Write L = L, + Q as above. For
the L, contribution estimate

{u,{(p — L,)u) 2 ll“v““i'qm + P““'i*(m'
For the Q contribution, the Schwartz inequality shows that
1€{Qu, u)) < cllul sy lull L2y + AVUL2e)-
The Peter—Paul inequality yields
1<Qu, u)| < (WD NVullfq + ¢ Hullizn.
Combining the two estimates yields
(4, (p — Lyu) 2 (20 Vullfsq, + (0 — Nuliaqy
Ifp 2 ¢ it follows that (p — L)u = 0 implies u = 0. a

The method of this section is to view L as a perturbation of L, which is
invertible. A similar argument is a standard tool in considering nonlincar
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perturbations of L. As an example suppose that Q is open and that
L: Re H'(Q) —= Re H™'(Q) is an isomorphism. Suppose that fe C(R) is uni-
formly Lipshitzian so that

Aasup{

Then u—f(u) is a uniformly Lipshitz continuous map of Re L%(Q) to itself
with Lipshitz constant A. The goal is to solve the semilinear (= linear in its
highest-order terms) Dirichlet problem

f(a) — f(b)
a-b

:a#b}<oo.

Lu+f)=geRe H'(Q) with ueRe H(Q). (14)
Apply L™! to show that this is equivalent to the fixed point equation
Fw=u, T=L"g-L"(f(u) (13)

Theorem 5. The nonlinear Dirichlet problem (14) has exactly one solution
provided that

AL lneLrqy~rerra < 1. (16)

The crucial hypothesis (16) says that f is sufliciently small. In particular, it
is satisfied for || { ¢, if f = eg with g Lipshitzian.

PrOOF. First note that I’ maps Re L3(Q) to Re H 1), so solving (14) is
equivalent to finding a u € Re L*(Q) solving (15).

The map I' from Re L3(Q) to istelf is Lipshitzian with Lipshitz constant
dominated by the left-hand side of (16). By hypothesis this is strictly less than
1 so Banach’s Contraction Mapping Theorem implies that I’ has a unique
fixed point u € Re L}(Q). )

PROBLEMS

For the variational approach of §5.3 and §5.4, Q could be bounded or unbounded.
The key was coercivity. The compactness arguments of this section require  to be
bounded. The first example provides counterexamples for unbounded .

1. Suppose that Q = R¢,

(i) For L = A show that L: H'(R*) = H'(R‘) has kernel equal to {0} and dense
range which is not closed. In particular, the Fredholm alternative is violated.

(ti) Show that (A — 1)~' is not a compact operator on L2()) by exhibiting a
bounded sequence u, € L*(R?) such that (1 — A) 'y, has no L?(R*}-convergent
subsequences.

Discussion. An argument like that in (i) shows that the embedding H'(R’) =+ L3(R*)

is not compact.

With two alterations, the methods of this section extend to the Neumann problem,
and other boundary conditions. For the Dirichlet problem, we were able to integrate
by parts with vanishing boundary contribution because the functions involved belong
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to H'(Q). For the Neumann problem, that is not the case. The replacement for
integration by parts in H'(S) is the variational form of the boundary value problem,
for example, equation (5.4.17). The second change is the compactness criterion. For
the Dirichlet problem, (L,)"* maps H ™' () into H'(Q) <‘—. H'(R?)so Theorem 1 applies
directly. For the Neumann problem the range of (L,)" is in H'(Q). It is not true that
the inclusion map H'(Q2) < L*(Q) is compact for arbitrary bounded open sets Q2
Fortunately, it is compact for moderately regular sets, for example, sets with Lipshitz
boundaries.

ExaMPLE. Let J, be the open interval of diameter 20" and center at the point 27",
n > 1. Then the I, are disjoint subsets of J0, 1[. Let Q= { )I,. Then the inclusion
H'(Q) <» L*(Q) is not compact since il u, is equal to 20 times the characteristic
function of /., then the u, have H'(Q) and L’(Q) norms equal to 1 and they have no
L2-convergent subsequence.

A skeptical reader should think that this is because the set € is infinitely connected.
A finitely connected bounded open set in R is a finite union of intervals and it is not
hard to show that the inclusion is compact ip that case. The next problem dashes the
naive hope that this example inspires.

2. Find a bounded open connected subset Q = R? such that the inclusion H'(Q) <

L3 is not compact. Hint. Think first of a disjoint union of open squares. Then

connect them. The crux is (o give a proof that the inclusion is not compact for the
resulting set.

There is a good strategy for proving that H'(Q) is compactly included in L2(fD).
One constructs a possibly nonlinear extension operator E: H'(Q) ~ H(R‘) with two
propertics '

(3c), (Vue HYQ)),  IEu! yirey < Ui (17

and
Eu=u onQ. (18)

If an extensxon operator exists it follows that H'(Q) <. L3 (Q) is compact. To prove
this, choose y € C(R*) with ¥ equal 1o 1 on a neighborhood of Q. Then if {u,} is
bounded .in H'(Q), then ¢, has an L’(R‘)-convergent subsequence by Theorem |.
The same subsequence is L(Q) convergent which completes the proof.

If @ <+ R* is 2 smooth submanifold with boundary, such extension operators are
constructed in Theorem 5.9.6. A celebrated theorem of Caideron shows that extension
operators exist for Lipshitz domains (see Agmon [A]).

§5.7. Eigenfunctions and the Method of
Separation of Variables

In this section we will show that the natural unbounded operator L on L%(Q),
defined by a real elliptic operator with Dirichlet boundary conditions, has
_ adjoint equal to the unbounded operator defined by L' with the same bound-
ary. condition. In pamqular, if L = L', the operatar is self-adjoipt.- When Q
is bounded the spectrum is discrete and converges to re 0. The scsuiting




208 S. The Dirichlet Problem

eigenfunction expansions generalize Fourier series and the cigenfunction ex-
pansions associated with regular Sturm-Liouville problems. They can be used
to solve a variety of boundary value problems, justifying the method of
separation of variables. In particular, we justify many of the heuristic ideas
about heat flow and damped wave motion which motivated the vanational
approach to the Dirichlet problem. This section supposes some familiarity
with elementary spectral theory. Good references are the first volume of Reed
and Simon [RS] and the classic text of Riesz and Sz-Nagy [RSzN].

Suppose that Q is a possibly unbounded open subset of R and that L and
L' are as in (5.6.1)-(5.6.5). For the sake of simplicity restrict attention to
operators with real coeflicients. The changes for complex coefficients are
minimal. The ellipticity condition is (5.4.22) in the complex case.

ExaMPLE. L = A — V(x) on Q = R? is particularly important in quantum
mechanics. For example, periodic ¥V model crystalline structures while V
which tend to zero at infinity lead to scattering theory.

Define an unbounded operator on L*(2) to be the restriction of L, defined
in the sense of distributions, to the domain

2(L)= {ue H'(Q): Lue L} Q)" (1)

In the same way, an operator L' is the restriction of the differential operator
L' to the domain

Z(L") = {ue H'iQ) L'ue L)) ()
Note that Dirichlet boundary conditions are hidden in both domains.

Theorem 1. L and L' are densely defined closed operators on L*(Q) and each is
the adjoint of the other.

Note that for elliptic operators with complex coefficients the adjoint would
be the restriction of the operator

UHZ a‘aj(a"-l’) - z 3,(5;&') + ar.

PrOOF. The domains contain Cg’(€2) so are dense.

Since the adjoint of any densely defined operator is closed it suffices to show
that the operators are adjoints of each other.

Since (L) = L, it is sufficient to show that the adjoint of L, denoted L*, is
equal to the operator L'.

Since (L -A)*=L*—, for any AeR it is sufficient to show that
(L—A)* = L'~ 1= (L — A). Thus without loss of generality L may be re-
placed by L — A.

Lemma 2. If A is sufficiently large and positive, then L — A is an isomorphism
of H'(Q) to H™(Q).
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This assertion is proved in the example following the proof of Theorem
56.2

Thus, without loss of generality, we may suppose that L and L' are isomor-
phisms from H!(Q) to H™'(Q). Then L is a bijection from 2(L) to L*(Q).

A function v satisfies L*v = g if and only if for all u € 2(L), (Lu, v} = (4, g)
where (-, -) denotes the scalar product in L¥(Q). Taking u e CF(Q) yields
L't = g in the sense of distributions. Since L' is real we have L'v = g in the
sense of distributions.

Choose w € H'(Q) solving L'w = g. Then a complex version of (5.5.6) shows
that (Lu, w) = (u, g) Thus (Lu, w — v) =0 forall ue 2(L). Since L maps Z(L)
onto L2(f2), we conclude that v = w so v € 2(L') and L'v = g. The proof is
complete. O

Corollary 3. If L = L', then L with domain defined by Dirichlet boundary

conditions as in (1) defines a self-adjoint operator on L*(Q). The spectrum of L
is a subset of ]1— o0, sup a].

PROOF. For u € 2(L), the identity (5.6.6) reads
(«, Lu) = I —a;;C,uc;ia + alul? dx. 3)
Q

The terms in Vu are noapositive so the form (3) is bounded above by sup(a)
times the L2(Q) norm of u. 0

Theorem 4. If Q is bounded. then the spectrum of L is discrete in R. In particular,
in L3(QQ) there is a compiete orthonormal set of eigenfunctions.

ProoF. If p > sup a, then ker(L — p) = {0) and the Fredholm alternative
implies that L — p is an isomorphism of H!(QQ) to H (). The restriction of
(L - p)! to L3(Q) is the inverse of the operator L — p with domain equal to
2(L). This inverse maps bounded sets in L3(Q) to bounded sets in H'(Q), in
particular, the inverse is a compact operator on L2(Q).

Thus (L — p)~! is a negative compact self-adjoint operator on L3(Q). Thus
thespectrum of (L — p)~* is discrete except for possible accumulation at {0}.

Since the range of (L — p)~! is 2(L), which is dense in L2(Q), the point 0 is
not an eigenvalue. Thus 0 must be an accumulation point of eigenvalues, since
L? is not finite dimensional. Label the eigenvalues as v, < v, < -+ — 0 with
each eigenvalue repeated according to its multiplicity which must be finite.

Choose an orthonormal basis of eigenfunctions ¢, in L2(Q), (L — p)'g; =
v;¢;. Since v; # 0, the eigenvalue equation implies that ¢; belongs to Range
(L - p) = 2(L) = H'(Q). In addition

Lo, =(L - p)o; + pp; = (L — p)((L = p)7'v/' @;) + p@; = (p + 1/v))0;.

Thus the eigenfunctions are also eigenfunctions of L with cigenvalues
p + 1/v; = A;converging to — co. Each eigenvalue has finite multiplicity. O




210 5. The Dirichlet Problem

ExampLEs. 1. If Q = JO, n[ and L = d?/dx?, then the normalized eigenfunc-
tions are (2/xn) sin(nx) for n = 1, 2, ... with eigenvalues 1, = —n?. The asso-
ciated eigenfunction expansions are called Fourier sine series.

2. Let L = A and the minimum width 6(Q) < oc. Then Theorem 5.3.1
shows that §*(Lg, ¢) < — (o, @) forall g€ H' so 4; < —572 < Ofor all j.

For u € L?*(Q) the Fourier series a;¢; converges to u in the L2 norm and
the L3(Q) norm of u is equal to gajl’. Note that the Fourier coeflicients
«; = (u, ;) = (u, §;) are meaningful for any u e H™'(Q) since @; belong 10
HY(Q). The next result complements the information from Bessel's identity.

Theorem S.

(i) If ue H'(Q), then the eigenfunction expansion of u converges in H(Q) and
Q{141 + Dla;1*)'? is equivalent to the H'(Q) norm of u.
(i) If ue H™'(Q), then the eigenfunction expansion of u converges in H™'(RQ)
and (3 (14 + 1)7|a;1*)"2 is equivalent to the H™'(Q) norm of u.
(iii) If k € N and u € 2(L"), then the eigenfunction expansion of u converges in
Z(LY and () (14;] + 1)**|4;1*)'? is equivalent to the graph norm in 2(L*) of
u.

The third assertion is valid for any self-adjoint operator with discrete
spectrum. It suggests that (i) and (ii) are the cases k = } and k = — 1, respec-
tively. In fact, (i) proves that 2(]L]''?) = H(Q).

It is interesting to note that the precise description of 2(L) for ctegular Q
given in equation (5.9.15) was not known until about 1950. The characteriza-
tionof 2(L*)in (5.9.15), together with the Sobolev Embedding Theorem, allow
one to translate the convergence results above to uniform convergence. For
example, one has C/(Q) convergence provided u € 2(L*) with j < 2k — d/2. If
Q is regular this extends to C/(€2) convergence.

PROOF OF (i).'.Choose p > sup(a). For u € 2(L) the Spectral Theorem implies

((p = L)u, u) = z (p— Aj)'“jlz-

The right-hand side defines a norm equivalent to (Y (14,1 + 1)|x,/*)"2. On the
other hand, (3) shows that the left-hand side defines a norm equivalent to the
H'(Q) norm.

For u ¢ H'(Q) choose u, € CX(Q) = 2(L) converging to u in A'(Q). Then
the Fourier c{ocmci'cnts a;(u,) of u, converge to the corresponding coeflicients
of u. Fatou’s Lemma implies that

2 (p = Alz)? < liminf Y (p — 4w,

Since the sum on the right is equivalent to the square of the H(Q) norm of

u,, the lim infis dominated by.a multiple of the H! norm of u, heaceis finite. -
Lets, = ) ;zaa(u}; be the partial sums of the Fourier expansion of «. Then

s, converges to u in L%(Q). To show that s, is a Cauchy sequence in H!(Q)
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notice that the s, belong to 2(L), soforn<m
s, — smllfmm = z (p— ’1,-)'“,'(“”2 <c z (p— )-j)|1j(“)'2 = o(1)

as n — . It follows that the s, converge to u in H 1(QQ) and
Huldr g = lim is,lim = Y (0 — )i, 0

Proor oF (il). For ue H™'(Q) let » be the solution of (p ~ L)v = u. Then
1(t) =(p - ;) 'a(u). Let s, be the partial sum of the Fourier series of u and
let v, be the partial sum of the Fourier series of v. The result follows since ¢,
convergesto vin H!,sos,=(p — L)v,convergestou = (p — L)vin H~!since
p — L is an isomorphism from H' o H™". 0

With L and Q as in Theorem 5 consider the mixed initial boundary value
problem

u, = Lu in [0, oc[ x Q, u=0 on[0. [ x Q. and u(0,)=1.
(4)

This is a parabolic equation in Q which generalizes the heat equation. If ¢; is
an eigenfunction of L with Dirichlet boundary conditions, then u(t. x} =
@,(x) exp(4;1) solves the boundary value problem with initial data ¢ The
eigenfunction expansion f = Y x,¢; suggest u = Y x;u; as the solution of the
initial value problem. The solutions u; are products of functions of ¢ and a
function of x. Seeking such product solutions is called the method of separation
of variables. It is of very limited utility but when it works it is very informative.

The analysis of (4) is almost identical to the analysis in §3.6 with () H*(R)
replaced by () 2(L*)and 2(L*) playing the rolc of H s Notethat fe (Y2(L")
if and only if the Fourier, coefficients of f decay faster than |2;)~" for any N.
It is not hard to show that |4} grows like j*¢ (Problem 3), so that this is
equivalent to decay faster than {j|" for any N.

Theorem 6. (i) If fe(\Z(L"). then there is one and only one
ue [ C([0, o : 2(L")) solving (4). The solution is given by the formula
u =" ap cxp(d;t) where [ = Y a;@; is the eigenfunction expansion of f. The
series converges in C*([0, oo[ : 2(L")) for all k.

The solution » € C{[0, o[ : H'(Q)), and it is in this sense that u satisfies the
Dirichlet boundary condition. If Qis nice, Theorem 5.9.3 shows that 2(L*) c
HQ) « C/(Q) if 2k > j — d/2 and it follows that u e C*([0, o[ x ) and
satisfies (4) in the classical sease.

PrOOF. If u is a solution, let u(t) = Zc,-(t)cp,- be the eigenfunction expansion.
Then

¢; = (u,, @) = (Lu, @) = (u, Lg)) = (u, 4,9)) = 4w, ¢)) = 4¢;.

Therefore ¢, (1) = const-exp(4,?). Setting ¢ = 0 shows that the constant must
equal a;. This proves uniqueness and the formula of the theorem.
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Conversely, if u is defined by the formula, then u € () C2([0, o[ : (L"),
and differenting the formula for u shows usolves theinitial value problem (4).

O

Define the evolution operator S(t) from ﬂ 2(L*) to itself by
S =) ajexp(i ) = u(t)  where f = Y. %0
Theorem 7.

(1) For t > 0, the operator S extends uniquely to a continuous map of L*()
to itself. For fe L*(Q), the resulting function u(t) = S(1)f is called the
generalized solution of (4).

(i) For t > 0, the generalized solution belongs to C'()0, oc : 2(L"Y)) for all j,
keN.

(iii) If fe HY(Q), the solution belongs to C([0, <[: H'(Q)) CY([0, <[
H~'(Q)).

(iv) If fe2(L*) and 0 <j < k, then the solution belongs to C/([0. x[:
Z(L*)).

This is a nearly immediate consequence of Theorem S. The generalized
solution is characterized by a variety of equivalent condition as in Theorem
3.6.3. For brevity we omit the discussion.

The strong regularity (ii) in ¢ > 0 is the smoothing property of the heat
equation in this context.

For unbounded Q the operator L is self-adjoint and bounded above and
the Spectral Theorem solves the initial value problem via the functional
calculus, u(t) = e'f. This gives an analogue of Theorem 6. Theorem 7 is valid
without modification.

Note that if fe L*(Q) it need not satisfy the boundary condition at ¢t = 0.
For example, one could have Q = 10, 1[ and f = 1. Since u is continuous with
values in H' in t > 0, the boundary conditions will be satisfied for ¢ positive.
In the case Q = 0, I[, f = 1, this shows that the generalized solution must
be discontinuous at the corners (0, 0) and (0, 1).

Next consider L = A and the initial boundary value problem (5.1.1) and
(5.1.2). Suppose that Q and g are smooth. Then the argument following (5.2.7)
shows that there is a v € 2(L) (actually C=(Q), see §5.9) solving (5.1.3). Then
w = u — v satisfies

w=Aw in[0,0[ xQ w=0 on(0, o[ xQ, w(0)elL?

Thus w = 3" a; exp(4,7) with {a;} € I2. By Example 2 above we have 4, < — 2
and it follows that w(t) converges exponentially fast to zero in in 2(L") for all
k. This proves that u(r) converges exponentially to v as ¢ tends to infinity. This
shows that the heuristic argument at the start of §5.1 is correct.

One can study the Schrédinger equation, wave equation, and damped wave
equation on Q with Dirichlet condition on o in the same way. This requires
a simple blend of the above ideas with those of Chapter 3. The details are left
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tothe interested reader. We remark that the damped wave equation associated
to L = A with Dirichlet boundary conditions yields a justification for the
discussion in Problem 5.2.1 (see Problem 5).

PROBLEMS

1. Suppose that L, and L, are self-adjoint second-order elliptic operators on bounded
domains 2, and Q, in dimensions d, and d,. Consider L = L,(x. D,) + Ly(y. D))
on functions u(x, y)in Q, x Q, with Dirichlet boundary conditions on ¢, x Q,).
Prove that the cigenfunctions of L are the products of the eigenfunctions of the L,
and that the cigenvalues are the sums of the eigenvalues of the L. Hint. It is casy
to see that the products are eigenfunctions. You musi show that these are all of
them. Use completeness. .

Discussion. This is another example of the separation of variables.

o

(i) Use Problem 1 and Example 2 following Theorem 4 to compute the eigenvalues
and eigenfunctions of the Laplace operator on a rectangle [1(0. al;) = R! with
Dirichlet boundary conditions. Hint. For all parts first do the case [, = 1.

(i) Show that the number of eigenvalues greater than - A? is equal to the number
of points in the lattice [] ((1;)~*2) which lic inside the ball of radius A in R*.

(iil) Conclude that as n — x. 2,n”~*¢ converges to a limit and compute the limit.

(iv) Observe that the limit depends only on d and the d-dimensional measure of
the rectangle.

Discussion. Part (iv) is a special case of Weyl's Theorem on the asymptotic distribu-

tion of the eigenvalues which was motivated by Plank’s law for black body
radiation.

The next problem shows that the algebraic growth n*4 s valid for all of our
self-adjoint elliptic eigenvalue problems. The key is the minimax principle for the nth
eigenvalue (see Reed and Simon [RS1] and Courant and Hilbert [CH1))

/= max min{(Le.vh el
dimiVi=n

the maximum being over n-dimensional linear subspaces of H'(9Q).

3. (i) Suppose that Q, € Q c Q, are bounded open subsets of RY and L satisfies
(5.6.1)-(5.6.4) and L = L' on the large set Q. Prove that

A.(L. Q)) S i.l‘-- Q) S ’.'.(L! Q[)o

where 4 (L, €) denotes the nth eigenvalue of L on € with Dirichlet boundary
conditions on &€

(i) Prove that if L and K are symmetric. they satisfy (5.6.1)-(5.6.4) on Q. and
(Lu, u) 2 (Ku, u) for all ue B'(Q), then /(L. Q) 2 4,(K, Q).

(iii) By comparing L to S,A + y, on rectangles Q; contained in and containing €,
show that there are constants ¢, > ¢, > 0 such that for n large

—c,n < i(L.Q) < —cn*

4. Suppose that L is a self-adjoint operator on an open set 2 defined by an operator

satisfying (5.6.1)—(5.6.4). In addition, suppose that 1,,, < 4; are successive eigen-
values of L. Prove the following theorem:

o e . -
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Theorem 8 (C. Dolph). If fe C'(R) and
Ao <inff'() S supf'(1) < 4, (5)
then for any g € H™'(Q)there is a unique solution to the semilinear Dirichlet problem
Lu~fw=g ueH'Q.

Hint. Apply Theorem 5.6.5.
Discussion. The hypothesis (5) is called a nonresonance condition. In a rough sense,
it says that the nonlinear term does not interact with the spectrum. The term
resonance comes from the study of nonlinear oscillations. This is the special case of
Q = [0, I] with periodic boundary conditions, where one is seeking [-periodic
solutions of second-order ordinary differential operators.

If f is monotone and 4, < f'(—®) < 4, <f'(+x) < oc, so that the nonlinear
term “interacts with only 4,”, the celebrated Landesman—-Lazer Theorem [LL)
describes exactly the range of Lu + f(u). See [N] for a nice description.

The next problem discusses waves propagating in R, x Q according to the damped
wave equation

U, —cAu+au, =0 INnRxQ acR,. (6)

Interaction with the boundary is described by the Dirichlet boundary condition (see
also Problems 3.7.2,3.7.3, and 5.2.1)

u=0 onR x Q. (N
5. Prove

Theorem

W If fe H' (Q) and ge L*(Q), then there is a unique generalized solution
ue C(R: H'Q) A CY(R: L)) satisfying (6) and (7).

(1i) Show that the energy is exponentially decreasing as t — oc in the sense that there
are positive constants ¢, a such that for all such u and all t > 0

Iu}(t, x) + |V, u(t, x)|? dx < ce” " J‘uf(o. x) + |V,u(0, x)|? dx.

Discussion. Since the au, term represents frictional resistance it is reasonable
to expect that x would be an increasing function of a. In fact, as friction tends
to infinity, one finds that x tends to zero. This counterintuitive result should be
revealed by your analysis. The cause, overdamping, is also present for the simple
damped spring, y* + ay” + ky = 0, y'(0) = 0, for which the energy, (y')* + ky?,
decays slowly if a is large.

§5.8. Tangential Regularity for the Dirichlet Problem

This and the next section are concerned with the differentiability of solutions
of the Dirichiet problem when the data are regular. The goal is to show that
the solutions u have two more derivatives than the right-hand side f; provided
that the operator L and domain Q are smooth. In particular, if fe€ C*(Q) then
u € C=(Q), so uis aclassical solution of the Dirichlet problem. Startingin §1.1,
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we have emphasized that a gain of m derivatives for an operator of order m
is peculiar to elliptic equations.

This regularity property is related to the origins of elliptic equations as
equations describing steady states of dissipative physical processes. These
processes have the eflfect of smoothing out irregularities. By the time the steady
state is reached the solution is as smoaoth as the data permits. The easiest
example of this sort is steady states for the heat equation, where the solutions
are regular thanks to the smoothing property of the heat equation. The
smoothing property is one aspect of its dissipative character.

Suppose that Q lies on one side of its C* boundary, precisely

Q <, R? is a compact submanifold with boundary. (1)

This is equivalent to compactness together with the existence of a defining
function p € C*(R*: R) with p = 0 and Vp # 0 on ¢Q. A coordinate patch is
an opcn set @ in R’ and a diffeomorphism n: € — R such that n(C n Q) =
n€Cyn{y, >0} n(¢NnecQ)= ((!‘)r\{vl =0). If n(t) = (y,(x),. ..,y (x)), the
y; are called local coordinates in € Q. Q is covered by a finite set of
coordinate patches.
Suppose, in addition, that L satisfies (5.6.1}-(5.6.4) so

a;;, a;, ao belong to C>(Q). )

The proof of regularity has two steps. First, we show that u is differentiable
in directions tangent to the boundary. A vector field ¥ =  v,(x)é;is a tangen-
tial vector field if v;e C =(R), and for all x € &0, V(x) e T,(éQ). That is. V is
tangent to the boundary Two equivalent descriptions are, ¢Q is charactenistic
for the partial diflerential operator ¥, and Vp = 0 for defining functions p.
These vector fields play a crucial role. The next result gives some important
" properties.

Proposition 1

(i) If V, and V, are tangential fields, then so is the commutator [V, V;].

(i) If n: @ = RS is a coordinate patch and V is a tangential vector field
supported in 0 A, then in local coordinates, V is a linear combination of
the fields y,0,, 0, ..., 0, with coefficients smooth in {y, > 0} N n(®).

(iii) There is a finite set of tangential fields, V;, ..., Vy, such that V is
tangengal if and only if V is a linear combination of the V, with coefficients
in C*(S2).

ProoF. (i) A vector field is tangential if and only if for any ¢ € C*(Q) with
Ylan =0 one has Wis =0. Using this characterization one sees that
V.V(¥) o = 0, and therefore that [V, VY| ag = 0.

(i) In local coordinates y flattening the boundary to y, =0, write
V = v(y)d/dy;. It suffices to show that v,(y) = 0 whenever y, = 0. Since the
function y, vanishes on the boundary and V is tangent to the boundary it
follows that Vy, = 0 when y, = 0, which is the desired relation.
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(iii) Any vector field can be written as a finite sum, ) ¢,V, where {¢;} isa
finite partition of unity subordinate to a covering {€;} by coordinate patches.

If €, = Q, ¢,V is a combination of the fields ¢;(7™"),8/0y, k = 1, 2,..., 4,
where n: © — R? is the coordinate map.! These fields are supported in the
interior of Q, so are tangential.

If @, is a boundary patch with the boundary flattened to {y, = 0}, then for
tangentlal V. @,V is described in local coordinates as in (it). Write v, = y, w
with w supported in the same subset of ¢ as w. Then ¢,V is a combination of
the tangential fields

) 8
@iin” ').(y‘ay‘) and  g¢n;'), (5-}-&) 2<k<d 0

Definition. Suppose that s € N and B is either AY(Q), L¥Q), or H}(Q). Then
B}, is the set of u € B such that whenever N < sand V,...., V, are tangential
vector fields then W, V,,..., Vyue B.

Aside. Spaces of distributions whose regularity is unchanged by the applica-
tion of tangential vector fields are called conormal. They play an important
role in a variety of problems in linear and nonlinear partial differential equa-
tions. They are a special case of what are called Lagrangian distributions. The
associated Lagrangian submanifold of the cotangent bundle is the conormal
vaniety of ¢Q. The wavefront set (in the sense of Hormander) of conormal
distributions belong to this submanifold (see {H2]).

ExampLES. 1. Let Q = 10, I[ = R. Then u = In(x) belongs to L(QY),,, for all
s. Note that uis smooth in the interior corresponding to the fact that tangential
derivatives are, in fact, all derivatives at interior points. However, u is not
smooth up to the boundary. The key is that applying xd/dx leaves u
unchanged.

2. With the same Q, u, the function x(x — 1)u belongs to H'(QJ,, for all s.
The function x*(1 — x)*ubelongs to H'(Q).,,ifandonly if 2 > } (Problem !).

3. In the interior of Q all derivatives are tangential so that if u e L2(Q);,,,
and x € Q, then u € H*(x) (see §5.3 lor definition).

4. Analogous definitions work on M, a smooth compact manifold with
boundary. If éM = ¢, then all vector fields are tangential and L*(M):,, =
H*(M). Thus tangential regularity is full regularity. This is relevant for the
Laplace—Beltrami operator and Hodge Laplacian described in §5.4. The
proofs of this section work with only minor modifications in these contexts.

VIf ¥: €, = €, is a smooth map from an open set in R¥!’ 10 an open set in RY'* and W =
Y w;(x)3/dx;is a vector field on €. then the push forward ¥ W is a vector field on €, defined by
choosing a curve 7: R - €, with y(0) = x and y'(0) = W(x). Then ¥ W(¥(x)) = (¥ o 7Y (0).
Equivalently, (¥, W)u = W(u o ¥). The expression m coordinates is

¢
(YWl = ; w,(x)—(x) Fre
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Let ¥ =(V,...., Vo) be a generating set as in Proposition 1(iii). For
pe N¥ let v? = Ve Vf. . Vi« Proposition 1(i) implies that taking the
products in a different order results in a differential operator which differs
from ¥/ by a sum of terms, each a product of fewer than | 8| tangeatial fields.
Thus u belongs to B, if and only if ¥"%u belongs to B for all 8 with |8] < s.
It follows that By, is a Hilbert space with norm

2 2
ul}, = ¥ Yul)2. (3
lull g, WZS‘ I(»"Yull}
The proof of completeness is left as an exercise.

Lemma 2,

(1) If Q(x, D) is a differential operator of degree | with smooth coefficients on
Q, then Q maps H'(Q,,, continuously to L*(Q)%,, and L*(Q.,, continuously
to H'(Q),,.

(i) If P(x, D) is a differential operator of degree 2 with smooth coefficients on
Q), then P maps H'(Q).,,, continuously to H™*(QY,...

PROOF. Asscrtion (ii) is an immediate consequence of (i). The latter is proved
by induction on s.

Suppose that s = 0. That @ maps L? to H™! is Proposition 5.4.5. The other
half is elementary.

Suppose next that s > 1 and that the result is known for s — 1. If |a) = s,
write ¥™* = ¥V, with | B| = s — 1. It suffices to show that ¥"*Q maps H'(Q),.
to L}(Q) and L3(Q);,, to H™}(Q). Write

VIQ = 1,0 = ¥IQV, + VIV, Q)

For the first term notice that ¥; maps H'(Q),, to H*(Q)2! and L2(Q),, to
L*(Q);..}. By the inductive hypothesis, ¥"*Q maps the target spaces to L3(Q)
and H™'(Q), respectively.

Consider next the second term. Since the commutator [ V;, @] is a first-order
operator, the inductive hypothesis shows that the second term maps H(Q);!
to L*(Q) and L*(Q);} to H™'(Q), which is more than we need since
B:‘ﬂ < B‘u-al ¢ D

The main result of this section is the following.

Theorem 3 (Tangential Regularity Theorem). If ue H'(Q), se N, and
Lue H™'(Q).,, thenu € H' (Q),,. In addition, there is a constant c = c(s) such
that for all such u

bl e, < c(llullp2qy + PLtllg-qy ) )]

This theorem shows that if u is the solution of a Dirichlet problem and
J = Lu has s tangential derivatives in H™'(Q), then u has s tangential deriva-
tives in H(Q). Note the gain of two derivatives. In the next section we show
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that both the interior and boundary Elliptic Regulanty Theorems are con-
sequences of this basic result.

PROOF. The first step of the proof is to derive (4) as an a priori estimate. (]

Lemma 4. For any s € N there is a constant ¢ so that for all u € H'(Q),,, (4)
holds.

Thg difference between this and the desired result is that we assume
ue(H)R,.

PROOF OF LEMMA 4. It suffices to show that the slightly weaker inequality

[l S CClull g, + I Lullgoremg ) (5)

holds. Given (8)’ for all s, one estimates

lullexq, < clulias < €y (Ul L2 + ILully-qy):

Repeating this process s times shows that (8) implies (8).

The proof of (5) is by induction on s beginning with s =0. Let L, =
—1 4+ ) &((a;; + a;)/2)9), so L — L, = Q is a differential operator of order |
with coefficients smooth on Q. In §5.4 we showed that L, is an isomorphism
of H(Q) to H~Y(Q). Thus

lullar < clLoully- < c(ILuly- + 1Qully-) < c(lLully-s + Null2)

the last inequality follows from Lemma 2 since Q is of order 1. This proves
(5) whens = 0.

Next supposc that the result is known fors — I withs > I.Forl <k < M,
apply the inductive hypothesis to V,u € (H'%:2}! to find

I Vtu“(ﬂ'bf:" S cs-l(“LVk““u‘l"):;' + ||Vx“||u.3);;')- (6)
Now
LViu = V;Lu + [L, V,]u, (7

and the commutator is a differential operator of order 2 with smooth coeffi-
cients. Therefore Lemma 2 implies that

HCL, Vk]ul(u"r;.l < C“u"u!l).-;l < o |i“"1,3(m.-;l + “Lu“}i“(ﬂ)f;‘)o (8)

the last estimate using the inductive hypothesis.

The first term on the right of (7) has (H')}.! norm dominated by a
constant times the (H™'),,, norm of Lu. This combined with (6) and (8)
completes the inductive proof. Od

Theorem 3 is also proved by induction on s. Lemma 4 proves the case s = 0.
For s > 1, suppose the result known for s — 1. The elegant idea of Nirenberg
is to apply Lemma 4 to difference quotients §'u approaching V,u. In this way,
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one derives (H'):} estimates for d;'u which are uniform in h as h tends to zero.
That Vu e H'( Q)2 follows. The detaxls of this argument are presented in the
next paragraphs. The proof is long because there are many technical results
which must be developed. The ideas are useful in a variety of other contexts.

If V is a tangential vector field, let ®, be the one-parameter group of
diffeomorphisms of Q generated by V. The fact that V is tangential implies
that Q and 8Q are invariant under the flow of V.

Example 4 following Proposition 2 of the Appendix shows that for any
diffeomorphism ®: Q — Q, the map C§’(Q) 3 ¢ — ¢ o ® extends uniquely to a
sequentially continuous map of 2(Q) to itself given by

(To®,¢)=(T,|det D®~}|g o (®7')). 9

Lemma 5. Suppose that ®: Q — Q is a diffeomorphism.

(i) For any se N, the map T T o ® is a bounded linear map of B}, to itself
where B is either B'(Q), L*(S2), or H™'()

(1) For the same s and B, if ®, is the flow of a tangential field V, then for
u € By,,, uo®, is a continuous function of t with values in B, ,,.

PROOF OF (i). The proof is by induction on s. Suppose first that s = 0.

For B = L?(Q), the result follows from the boundedness of DO,

For B= H'(Q), choose g,e C(Q) converging to T in H(Q). Then
g.o® e C3(Q)) and converges to To® in 2'(Q). The desired result then
follows from the estimate

g o ®lgiay < cligliray. forall geCE(Q)

This estimate is an immediate consequence of the formula for ¢(g o @) given
by the chain rule.

For B = H™!(Q), reason by duality. If Te H™'(Q) and ¢ € CE(Q)
KT o ®, )] = (T, |det DO~} |g o (®7!)})
S 1Ty llidet DO~ @ o (@)l 1
Explicitly computing the derivatives of [det D®~!|p o (®!) yields the bound
S cliTlg- el gn-
This proves the desired estimate for T o @ in H !(Q).

Next consider s > 1 assuming the result for s — 1. For any ue B and
tangential field W = )" w(x)4,
W(u o O)(x) = Y wy(x)3{u(P(x)) = Y. w,(x) (‘NX)) (x) (Zu)((x)),
(10)

s s TTETTTE e mem T
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where Z is the vector field on Q defined by
oo ¢
Z@@) = ¥ w2 €

L oW
ax)- ax. 0. ' O(x)* ( l l)
Z is the push forward of W by ®.
Since W is tangential and ® maps 0Q to itself, ®, W = Z is also tangential,
and so Zu € B! with norm bounded by a multiple of the B:,, norm of u. By
induction, the B:>! norm of (Zu) o ®is bounded by a multiple of the B:_;} norm

of Zu. Combining these two assertions yields the desired boundedness.

For use in the proof of (ii), note that an induction on |«| starting with (10)
for |a| = 1 proves

(Vo ®) = (@, Puley, Pu¥ =@, V,.....0, V). (12

PROOF. (it) By induction again.

Fors =0and B = L? or H', the proof is almost identical to the proof of
Lemma 5.5.2. The proof for s = 0 and B = H!(Q) is by a duality argument
to show that the H™!(Q) normof To ®, — T o ®,. is O(|t — ¢'|) (Problem 2).

For s > 0 note that (®,), ¥, is a smoothly varying [amily of tangential vector
fields. The proof of Proposition 1(iii) shows that there are smooth functions
au(t, x) on R x Q such that "

@)V, = Y a0V,

k=1

Using this in identity (12) with ® = ®, shows that (¥")*(u o ®,) is a combina-
tion of tangential derivatives of u o @, with smooth coeflicients. The continuity
for s > 0 is then a consequence of the s = 0 continuity. O

Definition. If ®, is the flow of a tangential field V let dpu = (uo ®_, — u)/h be
the associated diﬂ'crcngc operator.

The difference operator converges to V in the sense that for all u € 2(Q)
(resp. £(Q), 2'(Q)), &Pu converges to Wu in 2(Q) (resp. £(Q), 2'(Q)) as h tends
to zero.

Lemma 6. Suppose that N3s> 1 and B = H'(Q) or L*() or H™'(), and
ue B). Thenue B, if and only if the set of distributions {6y u:0 <h < |
and 1 < k < M} is a bounded subset of B,'.

PRrOOF. For the if part (which is the half needed in the sequel) note that for
u€ B:,,, V tangential, and any a, ¥*6*u— ¥*W in 2'(Q). If |a| < s — 1, the
distributions on the left are bounded in the Hilbert space B. Thus there is a
subsequence which converges weakly in B to a limit b. This implies that the
subsequence converges to b in 2'(Q2) and therefore that ¥ *Wu = b € B. Thus
u € B,,.
To prove the only if part, compute using the chain rule
o d

Zu o®, =) (Ju)o D)(v; 0 0,) = (M) o @, (13)

e -ttt 4 d e v b —-
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The right-hand side is a continuous function of ¢ with values in B.. Inte-
grating yields

o - - 0 - o
™ = 2 0;‘“ = hl I %(u o®)dt = -';1 J‘ ()o@, dt. (14)
-A

Use (12) to show

- o
‘V’G'u = Tl J‘ (((0,)‘ V)’W) o Q. de.
~A

Since u € BI,,, the integrand is a continuous function of ¢t with values in B
provided | 8] < s — 1. Furthermore, the B norm of the integrand is bounded
by a constant times the B, norm of u, the constant independent of 0 < h < 1.
This shows that the left-hand side is bounded in B. O

To prove Theorem 3 we estimate dpu in H'(Q)! for tangential fields V.
The strategy is to use the case s — 1 of Lemma 4. It suffices to show that for
0 < h < 1, Lé}u is bounded in (H™'):;! and 8)u is bounded in L3(Q).

The second assertion follows from the fact that u € H'(Q) = L*(Q)L,.

Since Lu € H™'(Q);,,,,Lemma 6 shows that 6} Luis bounded in H~!(Q)i,.!.

The key step is to show that the commutators [L, 3)Ju are bounded in
H™Y(Q)}. For each h, the difference operator 8} is bounded from H'(Q):!
(resp. H7}(Q)}) to itself, and L maps H'(Q);} to H™'(Q):}! continuously so
each term of the commutator maps B'(Q):2! — H™'(Q)} continuously. In-
dividually, they converge to LV and VL which are not bounded as maps
(B2} - (H7')2). Thus, the individual terms in the commutators are not
bounded independent of 0 < h < 1.

The arguments above and to follow are presented globally in Q in a
coordinate free way. One could equally well have used partitions of unity and
local arguments where the fields y, d,, 0., ..., 3, would play a central role.
Those more comfortable with computations in local coordinates should have
little difficulty translating to that form.

The next lemma is the crucial commutator estimate.

Lemma 7. If P(x, D) is a differential operator of degree 2 with smooth coeffi-
cients onQ and V is a tangential vector field, then for any s € N the commutators
{[P, 63]: |h| < 1} are uniformly bounded as maps of H'(Q),, to H™}(Q);,..

So as not to lose the thread of the argument we complete the proof of
Theorem 3 assuming Lemma 7.

END OF PROOF OF THEOREM 3. Recall that the strategy is to prove that
u € H'(Q).,. by showing that 5}u is bounded in B*(Q)=! for 0 < h < ! and
Ve {V;,..., Va}. Using the case s — 1 of Lemma 4, this was reduced to
estimating the H™'(Q)! norm of L(6)u) Lemma 6 estimates é)Ly and
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Lemma 7 estimates the commutator {8, L]u. One obtains
I6pull g1qyes < const. times the right-hand side of (4) (15)

for 0 < h < 1. Lemma 6 implies that u € H'(Q),,.

The proof of Lemma 6 shows that there is a subsequence A, — 0 such that
w, = dp~u— Vuin H'(Q);}. Using (15) and the lower semicontinuity of norm
with respect to weak convergence yields

1 Viall gogpes < lim infll69ull g1 q)e- < c(right-hand side of (4)).

Summing over all Ve {V,, ..., V) } and adding the estimate from the s — |
case of the theorem yields estimate (4). O

Lemma 7 is proved using the next two lemmas.

Lemma 8. Suppose that s € N, a € CP(R?), V is a smooth compactly supported
vector field on R and ®, is the one-parameter group of diffeomorphisms

generated by V. For h # 0,let 6*u = (u o ®_, — u)/h be the associated difference
operators.

(i) The mapsur>u o ®,,|h| < 1 areuniformly bounded from H*(R*)to itself.
(ii) The commutators {[a, 5*]: |h| < 1} are uniformly bounded from H*(R?) to
itself.
(iii) For any 1 <j<d, the commutators {[¢;, 6*): |h| < 1} are uniformly
bounded from H'(R?) to H* ' (R’).

PRrOOF. (i) For u € C$(R?¢) compute, suppressing h momenlarily.
c’u o

t.

=) ax((d’(t)) —.

Xj

By induction one shows that for |af < s, 0*(uo ®,) is a finite sum of terms,
each of which is a product of 9=*u(®(x)) times a finite product of derivatives

of the components of ®,. As these derivatives of ®, are uniformly bounded
for |h| < |

Iu o oh“".(g‘) < C““"n-(nd) forall ue C:(R‘) and |h| < 1.

The desired result is then a consequence of the density of CZ(R?) in H*(R?).
(ii) Compute for u € ¥ (R*)

h[a, 5" Ju = a(uo ®_, — u) — ((au) o ®_, — au)
=auo®_\)—(au)od_,=(a—-ao®_,)(uc®_,)

Since the maps ur—u o @, are uniformly bounded from H*(RY) 1o itself, it
suffices to show that multiplication by (a — a o ®_,)/h is uniformly bounded
on H!(R?). These difference quotients converge to — Va uniformly together
with all derivatives. In addition, for || < 1, the supports are contained in a
compact set independent of h so that the difference quotients converge to — W
in. Z(RY). The desired result is then a consequence of Proposition 2.6.4.
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(ili) Compute for u € (R*) and 8 = ¢
hod*u = duo®_,—~u) and  hé*éu = (u) o ®_, — du.

Thus
h{0,0"Ju=du-®_,)— (du) o _,.

Now
o5 (f1-0.)(522)
so
h{o,6*Ju=Y (:_:: o o_.)(a(:;l"" - &, ,), (16)

where 6, ; is the Kronecker delta.

Note that since ®o(x) = x, (®,),/0x; = &, ; when h = 0. Thus the Funda-
mental Theorem of Calculus yields

a(Qh)h/axj - 61.1 =1 ! _(_i_(?(@..),,
h hJo d0 ¢x;

do = @y,;. (17)

The 8 derivatives inside the integral are equal to h times ¢ derivatives of ®,,
so the above expression shows that for |h| < 1, the ¢'s belong to CZ(R?), have
support in a fixed compact set, and have partial derivatives bounded in-
dependent of h. Proposition 2.6.4 shows that multiplication by the ¢'s is
uniformly bounded from H*(R?) to itself. Then the expression (16), together

with the fact that the family o @, is uniformly bounded from H* to itself,
completes the proof of Lemma 8. O

Lemma 9. Suppose that V and W are tangential vector fields on Q, ®, is the
flow of V, and 6} is the associated difference operator, and B is either H'(Q),
L*(Q),or H'(Q). Then, forany | 2 s € N, the operators {[W, 53]: |h| < 1} are
uniformly bounded from B¢, to B..}.

ProoF. The definition of 5} yields

iy = T ° d;'-h - W
W(bu) = Wuo 0'::.) — W ((@.4), Wh); o, — Wh.

Subtracting the first from the second yields
[W.6]u= h-l(((‘b-n). Wu) — W) o @_,.

Now (®_,), W is a smoothly varying family of tangential vector fields. Thus
(®_a) W =) aih, x)V, with a,€ C*(R x ©). Then
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[W, 8] = (}: h™(a,{h, x) — a0, x))v,.) od_,.

For |h| < 1, the coeflicients h"(aj(h, ') — a,(0, *)) belong to a bounded set
-in C*(8). Thus the family in paraentheses is a bounded family of maps from
B, to B:!. Since o ®_, is a bounded family from Bj! to itself the desired
result follows. O

Finally, we can combine the above ingredients to prove Lemma 7.

PROOF OF LEMMA 7. It suffices to show that for |a| <s the family
{¥°[P, 52]: |h| < 1} is uniformly bounded from H'(Q),, to H™!(Q).

The proof is by induction on s. To prove the case s = 0 extend the coefli-
cients of Pand V to elements in CF(R?). Then Lemma 8 shows that the family
{(P, )]: |h| < 1} is bounded from H'(R’) to H™!(R*) = H'(R“). Restricting
to the closed subspace H'() yields the desired result.

Next suppose thats > 1and the result is known for s — 1. For |«| = s, wnite
v?*=9?V,with|Bl=s-1and 1 <j <M. Then

VP, 81 =v*V[P,&]1=v'[P, IV, - v*[[P.&] V] (18)

For the first term on the right, note that V; is bounded from HY(Q),,to
A (Q):}, and by induction ¥*[P, &3] is uniformly bounded from H* Q)
to H™1(Q). Thus, to complete the proof, it sufflices to show that [{P, 5}], V]
is uniformly bounded from H*(Q),, to H™'(Qy .

Use Jacobi’s identity to write

((P, &3, V;] = —[(év. V), P] - [V}, P1. &) (19)

Lemma 9 shows that [48, V] is uniformly bounded from B, to B}, with
B = H'(Q) and B = H™'(Q). This, together with the fact that P is bounded
from H}(Q),, to H'(Q),, for r = sand r = s — 1, suffices to show that each
term in the commutator of (53, V,] with Pis uniformly bounded from H'(Q),,
to H}(Qy~!.

Since [V, P] is a differential operator of order 2 with smooth cocflicients
on €2, the inductive hypothesis shows that the second term on the right in (19)
is uniformly bounded from H'(Q)!;! to H™'(Qr~!, which is a stronger conclu-
sion than needed. a

This completes the proof of Theorem 3.

The same sort of Tangential Regularity Theorem is true for the Neumann
problem, that is, Lue H ' (Q);,,, implies u € H'(Q),,. Note that one has H'
and not H! and that the boundary condition is expressed as in (5.4.17). The
proof must be modified since u o ®, need not satisfy the Neumann condition
O(u o ®,)/cn = 0. What one does is, take as a test function ¢ o ®, in (5.4.17)
and subtract the resulting expression from (5.4.17). After some manipulation
and estimation of commutators as in this section, one ends up with uniform
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estimates for a 6*u in H!(Q). In this way, one gets the case s = 1. The general
case is an inductive argument (see Agmon [A]).

Other methods for deriving elliptic regularity do not rely on the use of
coercive quadratic forms but rest more on Fourier analysis. The reader is
referred to the treatises of Taylor [Ta] and Hormander [H2] for these
methods.

PROBLEMS

1. Forl = s e N, provethat x*(1 — x)* In(x) belongs to H!(J0, 1[)*ifand only ifx > 4.
2. Give a detailed proof of the s = 0 case of Lemma 5(ii).

3. Suppose that Q = JO0, I[ < R. Prove that CF(J0. 10) is dense in B, for B = L3(Q),
H'(Q), H'(Q).
Discussion. The same result is valid for any nice subset Q of RY. The proof of that

more general case should be clear upon combining your solution of this problem
with the methods of §S.5.

4. Suppose that p € C(€Q). p| ;0 = 0.and Vp(x} # 0 for x € Q.
(i) Prove that u e L}(Q)), if and only if pu e H'(Q).
(i) If | = se N, prove that u € L3(Q),, if and only if p*u € H*(Q).
(iiiy Formulate and prove H'(Q) and H™'(Q) versions of parts (i) and (ii).

§5.9. Standard Elliptic Regularity Theorems

In this section we continue the study of the differentiability of solutions of the
Dinichlet problem. In the last section differentiability tangent to the boundary

was proved. The results of this section require some simple definitions, moti-
vated by Proposition 2.6.2.

Definition. If v = R? is open and s € N, then

H)(w) = {u e L}(w): (Vial < s), ¢*u € L} (w)}. (1)
H*w) is a Hilbert space with norm
"““lzmm = Z ﬂé’uﬂi%wr ()
lei<s

In these definitions, d%u is the distribution derivative. The completeness of
H* is proved as follows. If u, is a Cauchy sequence then for {a| < s, 2%y, is a
Cauchy sequence in L{w). Since L*(w) is complete these derivatives converge
tolimits f, in L*(w). Then 8%, =f, € L¥(w)so f, € H*(w)and 8% — f, in L}(w)
sO u, — f, in H¥(w).

Definition. fse N, Qc R, x € Q, and u € 2’(Q), then u belongs to H* at x,
denoted u € H*(x), if there is an r > 0 such that u € H*(Q N B,(x)).
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Thus u e H*(x) means that there is an r > 0 such that the distribution
derivatives of u of order less than or equal to s are square integrable on
QN B(x).

Consider L satisfying (5.6.1)-(5.6.4) and Q < R* a smooth submanifold with
boundary. The main results of this section show that if u satisfies the Dirichlet
boundary condition, that is, u e H(Q), then u is in H***(x) at any x where
Lu € H*(x). The results are straightforward consequences of the Tangential
Regularity Theorem proved in the last section.

We begin with a simple result which explains why we expect a gain of two
derivatives. An even more special case is Proposition 2.4.6.

Proposition 1. Suppose that P(D) is a constant coefficient elliptic operator of
ordermand s e R

If u e H(R*) and Pu € H*(R®), then u e H**™(R’). (3)

Conversely, if P(D) is an mth order operator such that (3) holds for some s e R.
then P is elliptic.

A similar result is true for variable coefficient operators and local regularity.

An mth order P(x, D) is elliptic at x if and only if u is in H**™(x) whenever u
and Pu belong to H’(x).

PROOF OF PROPOSITION 1. If P is elliptic, Problem 1.6.7 shows that there are
positive constants c; such that

IPEH = ¢ (O™ = (5™
Estimate (§)"™! < ¢¢{)" + ¢, to see that
G <{HT _
2

[P()l =

Then
L EYMa)P dé < ¢ I OPUPE + ¢3)*1a(é)* de.

é Ré

By hypothesis the right-hand side is finite and it follows that the left-hand side
is finite.

Conversely, suppose that P is not elliptic. For se Rletp=s+m— 1. It
suffices toshow that thereis a uin H* such that Pu € H*, but uis notin H°*!.

Since P is not elliptic there is an w € R? with [w| = 1 and P, (w) = 0. Then
P, vanishes on the ray {rw: r > 1}. Since VP, is a polynomial of degree m — 1,
it follows that | P, | < c{{>™"! on the set of points within unit distance of that
ray. Thus |P(¢&)] < ¢’<&)™! on the same set.

Suppose @ a nonzero element of C3(|€| < 1). Define @ to be a sum of
translates of this function in the direction of » weighted so that u belongs to
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H® but not to H*** for any & > 0. For example, take

2() = Y. (¢ — nw)(n**'? In(n))™".

Since P(&) is O(¢&)™")on the support of u we have Pu e H*™™*! = H*. The
prool is complete. 0O

The next result concerns the regularity of a function at an interior point x
of an open domain Q. The differential operator is

L= Zau(x)ataj + zal(x)a.' + aol(x), (4)
au, a;, Qo belong {o CQ(_E . R). (5)
3u>0vEeR, Y a,(x&¢; 2 nlél’ (6)

Here C*(x) means C® on a ball centered at x.

Theorem 2 (Interior Elliptic Regularity Theorem). Assume that the operator L
has smooth coefficients and is elliptic, that is, (4), (5), and (6) hold. If u € 2'(Q)
belongs to H*(x) and Lu belongs to H*(x) for some 0 < s € N, thenu € H***(x).

PRroOOF. We show thatifee N,1 <6 < s+ 1.and u € H*(x), thenu € H**!(x).
Applying this result s times beginning with ¢ = 1 yields the desired conclusion.
_ For ue H*(x), choose r > 0 such that the coeflicients of L are smooth on
B,(x), the derivatives of u (resp. Lu) up to order o (resp. s) are square integrable
on the ball, and L is elliptic on the ball in the sense that

— ‘ 4N
(Vx € B,(x), £ € RY), zai,(x)Qig,‘ 2 3 (7
Choose ¢ € C5(B,(x)) with ¢ identically equal to 1 on a neighborhood of x.
The strategy is to apply Theorem 5.8.3 to the function ¢u in the set B,(x).

By construction ou e H°(B,(x)) and ¢u is compactly supported in the
interior so @u e H'(B,(x)). The crux is to show that L(¢u) belongs to
H™(B,(x))S,.. Compute

L(ou) = oLu + [L. ¢]u. @8)

By the choice of r, the first term belongs to H*(R?) ~ &°(B,(x)). The operator
[L. ¢] is of order 1 and has coeflicients supported in supp ¢ hence strictly in
the interior of the ball. Thus the second term belongs to H°~!(RY) n &'(B,(x)).
Since ¢ < s + 1, both terms belong to H*~}(R4) n &' (B.(x)), which is included
in H™'(B,(x))L,a-

Theorem 5.8.3 implies that gu € R*(B,(x)).,- Choose ¢ € CP(B,(x)) with ¢
identically equal to 1 on a neighborhood of supp ¢. Thenfor 1 <j < d,yd/¢x;
is a tangential derivative in B,(x). Thus, for |f| < ¢ + 1, (¥P(ou) € L*(B,(x)).
These derivatives are equal to &#(¢u) and the proof is complete. 0O

Exampies. 1. If Lu € C*(x), then u € C*(x). To see this note that one can
choose ¢ independent of s to find that gu & [} H*(R*), and the result follows
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from the Sobolev Embedding Theorem. Note that the regularity of u near x
1s not influenced by singularities of Lu outside a ncighborhood of x. Similarly,
irregularities in the coefficients of L outside a neighborhood of x do not
influence the regularity of u at x. This is in sharp contrast to hyperbolic
equations were singularities propagate.

2. If Q < R is open and L satisfies (4), (5), and (6) at each x in Q and if Lu
belongs to C°(Q), then so docs u. Note that one requires neither regularity of
the boundary nor uniformity of (5), (6) as one approaches the boundary.

3. The Hodge Decomposition Theorem of differential geometry is a
straightforward consequence of the Interior Regularity Theorem applied to
the Hodge Laplacian described in §5.4.

4. While Lue H*(x)=u e H***(x) and Lue C*(x)= ue C*(x), it is not
true that Lu € C*(x) = u € C**3(x) (Problem 3).

Remark. A simple partition of unity argument shows that if (4), (5), and
(6) hold at all xe Q. w, ccw, cc Q, ue H'(w,), and Lu e H*w,), then
u € H**¥(w,). Moreover. there is a constant ¢ = c(s, @,, w,, L) so that, for all
such u,

||u"m°3(o,,) < ¢ |L““n'(w,) + “u“u'm,))-

The next result allows one to prove regularity up to the boundary, for
example, C>(Q). For that one needs to assume that the boundary is smooth
and that the coeflicients are regular up to the boundary. In addition. one needs
to know that boundary conditions are satisfied.

ExAMPLE. Let Q = B,(0) = R% Then u = Re(l,(z = 1)*?) is harmonic on £,
square integrable on €, but certainly not regular at (1, 0). One needs appropri-
ate boundary conditions to force regularity. For this u, the Dirichlet data
ulag € C(CQ\(1,0)) and regularity at all points other than (1, 0) is forced.

As in Theorem 2, regularity of solutions near x is influenced only by local
behavior of L, Lu, and ¢Q.

Definition. A point x € ¢Q is called regulur if there is an r > 0 and a diffeomor-
phism x: B,(x) = R} such that x(B,(x)n Q)< {y, >0} and x(B,(x)\Q) <
{y, <0}

ExampLEs. 1. Q <, R?is a smooth submanifold with boundary if and only if
every boundary point is regular.

2. If Qis a square in R?, then the vertices are not regular and the other
boundary points are regular.

Definition. If ue 2'(Q) and x € 0, then u € H(x) if and only if there is a

@ € Cg (R*) such that @ is identically equal to 1 on a neighborhood of x and
ou e H(Q).
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The hypothesis of the next result is that (5) holds with x a regular point of
Q. The precise meaning is that there is an r > 0 such ghat the coefficients
belong to C=(QnN B,(x)).

Theorem 3 (Elliptic Regularity at the Boundary). Suppose that x is a regular

point of 3 and that (8), (5), and (6) hold. If u € H'(x) and Lu € H*(x),0 < s€e N,
then u € H***(x).

ProoF. Choose r so small that on B,(x) ~  the coefficients of L are C* and
satisfy an eilipticity condition analogous to (7). the derivatives of Lu up to
order s are square integrable, and there is a local coordinate change on B,(x)
as in the definition of regular boundary point. Choose ¢ € Cq’(B,(x)) such that
o is identically equal 1o 1 on a neighborhood of x and ou € H'(Q).

The strategy is to apply the Tangential Regularity Theorem 5.8.3t0 gu. To
do that, we need that ¢u is defined on a smooth submanifold with boundary
on which Lis a smooth elliptic operatot. Choose ’ < r so that supp(o) =<
B,.(x). All boundary points of the open set 2 N B,.(x) are regular except those
on &Q n &B,.(x) which lic outside the support of ¢ (Figure 5.9.1). Smooth the
boundary near those points to obtain a smooth embedded submanifold @
such that w < B,(x)~ Q, and for some ¢ > 0

fw Nsupp(y) € CQ N B,.(x).

In particular, pu € H' ().

The Tangential Regularity Theorem is next used to prove that pu € HY (R,
To do that, it suffices to show that if } < ¢ <s and gue H'(w),,. then
oue H (@)or'.

To show that ou e H'(w)?}} using the Tangential Regularity Theorem, it

8(' (X)

supp p

smoothed boundary

Figure 59.1
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suffices to verify that L(pu) € H™! (w)g!. Use equation (8) for L(qu). The first
term belongs to H*(w) by construction. The commutator [L, ¢] is a smooth
differential operator of order t with coefficients supported in supp(). Choose
¥ € Co'(B,(x)) with ¢ equal to | on a neighborhood of supp(¢). Since
Vu € H' (@), it follows that [L, @]u = [L, ¢]yu € L*()Z,,. Thus both terms
on the right of (8) belong to L}(w),, = H™}(w)2*!, since if one applies 6 + 1
tangential derivatives, the first ¢ maps L3(w);,, 10 L(w) and the last maps
L*(w) to H™'(w). This completes the proof that ¢u € H*(w):*).

This regularity has the correct number of derivatives, namely s + 2, but
s + 1 of them are restricted to be tangential derivatives. The proof is com-
pleted by using the diflerential equation to express arbitrary derivatives in
terms of tangential derivatives. This idea bears the intimidating name partial
hypoellipticity at the boundary. 1t is little more than the calculation of the
Cauchy-Kowaleskaya Theorem. We perform the caiculation in the local
coordinates y provided by the mapping x in the definition of regular point.
Without loss of generality suppose that y(x) = 0. Choose p > 0 so small that
B,(0) =< x(int({e = 1}). Let B* = B,(0)~ {y, > 0}. The tangential regular-
ity proved above shows that

(%161, Gy €U0 x™") e H'(B*)  provided |zl<s+ 1. (9)
The strategy from here is to prove,fork =0....,s + 2,
(C20... 0V o™ YeL3B*) if |2j+k<s+2 (10)

This suffices to show thatu o x~! € H**2(B*). However, since y is a diffeomor-
phism on a neighborhood of the closure of B*, the L3(;~!(B")) norms of the
derivatives of u up to order s are bounded by a multiple of the H***(B*) norm
of uo x™'. Thus u € H**}(x™"(B")). It remains to prove (10).

The proof of (10) is by induction on k. The cases k = 0. | have already been
proved in (9). Suppose next that (10) is known for some 0 <k <s + 1. To
prove(10)fork + lletv = u o x™* and write the differential equation for t as

L(y, é,)c = (Lu)o ™" € H*(B*), (11)

where L is the expression for L in the y coordinates (see §1.6 where n = 1 7').
Separate the ¢, derivatives in L

-

L= a,,e,z + Zzauau + a\(‘:, + P(}'. éz.....é‘), (12)

where P is of order 2. Since a, is the value of the symbol of L evaluated at
(1,0.....0) and L is elliptic. a,, is never zero. Thus (11) can be solved for ¢iv
to give

éiv = —(a,,)"' (Y 8,;6,;+a,0, + P(y,2,,...,8,)v) + HB*). (13)
Differentiate k — 1 times with respect to y, to find
Ot =2 ¢, (0@ V@,,.... v + H*'XB*), <k, j+IBl<k+]1,
where ¢; , € C*(B*). Since j < k in the sum, the inductive hypothesis shows
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that the right-hand side belongs to H**'™*(B*). Thus, if [x| <s + 1 — k, then
(B3s-.., 840 v € L}(B*). This proves the case k + 1 of (10) which completes
the inductive argument. 0O

Corollary 4. Suppose that 0 < se N, Q c R? is a smooth embedded submani-
fold with boundary, and L satisfies (5.6.1)~(5.64). Then ue H**%(Q) whenever
u € H(Q) and Lu € H*(Q). Moreover, there is a ¢ € R so that for all such u

hull He-x) S c(||Lul} o + “““mcm)-

ProoF. Theorem 3 shows that for each x € Q there is an open ball B,,)(x) such
that u € H**2(B,). Cover the compact set by a finite number of such balls
to prove that u e H**%(Q).

The estimate (13) can be proved by retracting the proof of Theorem 3,
keeping track of the estimates at all steps. However, it is worth noting that
the estimate (13) is a consequence of the regularity result proved in the first
paragraph. Define a normed linear space X by

X={ue H'Q): Lue HQ)},  llullx = Ll yuen + lullirn-

X is complete since if u, is a Cauchy sequence in X, then Lu, is a Cauchy
sequence in H* and u, is a Cauchy sequence in H'. By completeness of these
two spaces it follows that u, converges to a limit u in H! and Lu, converges
to a limit fin H*. Then Lu = f,soue X andu, —uin X.

The first part of the corollary shows that X <, H**?. Call the inclusion map
1. The inequality (13) is equivalent to the continuity of 1.

Since X and H**? are complete and 1 is everywhere defined, continuity
follows if we show that the graph of 2 is closed. Thus, it suffices to show that
if u,—»u in X and m, = u, — v in H**?, then w = v. Note that in L?, u,
converges to both u and v. Thus u = v. Since u = u, this ends the proof. [

Ifu € A and Lu e C*(S), this corollary proves that u e H*(Q) for all s € R.
One would like to know that u is smooth up to the boundary in the sense that
u € C*(Q). This follows from a smooth bounded set version of the Sobolev
Embedding Theorem.

Theorem § (Sobolev Embedding Theorem). Suppose that Q <, R?is a compact
smooth submanifold with boundary. If N 3 s > k + d/2, then every element of
H*(Q) is equal to a function in C*(Q). In addition, there is a constant ¢ = c(s, k., )
such that

lullongsy < cliull gy Sorall ue HYQ). (14)

The equality of this theorem is in the sense of distributions, that is, there is
an element of C¥(Q) which defines the same distribution.

ExaMpLES. In these examples suppose that Q and the differential operators
satisfy the hypotheses of Theorem 5.
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1. If fe C=(Q), then the H '(Q) solution of the Dirichfet problem con-
structed in §5.3 belongs to C* (). In particular, it satisfies the differential
equation and boundary condition in the classical sense.

2. The eigenfunctions ¢; of self-adjoint operators L, as in §5.7, belong to
C=(Q)).
3. The unbounded operator defined on L(Q) by the differential operator
in §5.7 has
2(L) = H'(Q) ~n H}(),

2(LY) = {ue H*Q): ue H'(Q)for0 < j< k — 1}. (15)

Thus convergence in the graph norm of 2(L*) is cquivalent to H**(Q) con-
vergence and stronger than C™(Q2) convergence whenever m < 2k — d/2. These
results complement the conclusions of Theorems 5.7.5-5.7.7.

There are two distinct strategies for proving inequality (14). The first is to
use the Fundamental Theorem of Calculus to express u as an integral of
suitable derivatives of u and then use Hélder’s inequality or a variant (see, e.g.
Courant and Hilbert [CH, Vol. 2]). The second is to extend u to an element of
H*(R‘) and then apply Theorem 2.6.7 to the extension. Following this strategy,
Theorem § is an immediate consequence of the next result which is of in-
dependent interest.

Theorem 6. If Q —. R? is a smooth compact submanifold with boundary and
s €N, then there is a bounded linear operator E: H*(Q) — H*(R?) such that
Eu=uonQ.

The proof of this result has two steps. C* _(ﬁ) is proved to be dense in H*(Q),
then the operator E is constructed on C®().

Theorem 7. If 5_3 < R? is a smooth compact submanifold with boundary and
s € N, then C*(Q) is dense in H*(Q).

ProOF OF THEOREM 7. Choose V a compactly supported smooth vector field
on R’ which is transverse to 3Q and points toward the interior of Q at Q. Let
®, be the flow generated by V and let Q, = ®,(Q). The proof of Lemma 5.8.5(i)
shows that o @, is an isomorphism {rom H*(€,) to H*(Q) with inverse given by
o ®_,. The norm bounded uniformly for |¢] < 1.
For ue L3(Q)
lued — ullp2q — 0 as t—-0+.

This is obvious if ue C(Q). The density of C(Q) in L?(Q), together with the
uniform boundedness, completes the proof.
Identity (5.8.13) shows that

a.(u ° °t) = (((¢3)‘al’ (0:)'52» seey (0')'34)'“) ° 0,.
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It then follows from the L() case that for u € H*(Q)
“uOQ,—ul!".(m—‘o as t*’0+.

Since Qcc Q_,, dist(Q, dQ_,) =6 > 0. Let j, = n7%(x/n) be a standard
smooth approximate delta supportedin |x| < n. Then forany w € L}(Q2_,)and
n < 6, the values of j, » w on Q are determined by the values of win Q_, and
jo¢w—win L*Q) as n — 0. Differentiating, it follows that for we H*(Q_,),
j'o w— win H*).

Given u € H*(Q) and ¢ > 0, choose t > 0 such that theu o ®, — u has H*(QQ)
norm less than ¢/2. Then choose n > 0 so that j, s (uo @) — u o ®, has H*(Q)

norm less than ¢/2. Then (j, » (u o ®,))|q is the desited C=(Q) approximation
of u. 0

PROGF OF THEOREM 6. Decomposing u with a finite partition of unity for €, it
suffices to extend elements of H*(Q) which have support in a fixed compact
set K in a coordinate patch yx: B,(x) - R‘ with x € ¢Q.

It suffices to extend uo 3! from H*(y, > 0) to H*(R®), for if v is such an
extension we may choose y € C3 (x(B,)) with ¢ identically one on a neighbor-
hood of x(K). Then (¥v) o x extends u to an clement of H*(R?) supported in

The extension operator on {y; > 0} is given by

(Ew)(y,, )= ) aw(—jy,,y) for y, <0O.
0sj<s
The real coefficients a, are chosen so that E maps C*(y, > 0) to C*(R®). This
is achieved by forcing equality of the derivatives 6} Ew(0+, y’) for k < s. This
holds if and only if

Y(-ay=1 for 0<kss.
]

This set of s + 1 equations for the s + | unknowns a; has as cocflicient the
Vandermonde matrix which is invertible, so the g; are uniquely determined.

The extension operator E so defined maps Ci(y, = 0)n H¥(y, > 0) to
C(RY) n H}(R?) and

REWN gogrey < CliWll oy, >0 forall we Cy, 2 0)n H*(y, > 0).

The proof of Theorem 7 with ¥V = é/cy, shows that C3, (y, 2 0) is dense

in H*(y, = 0), so the set of w as above is dense and E extends uniquely to the
desired operator. a

The next examples show that some regularity is required of Q in order for
the above results to be true.

ExaMPLES. 1. LetQ = ]-1,0[U]0, 1[in R. Every element of H'(R) is contin-
uous at x = 0 but the function u = sgn x belongs to H'(Q). Clearly, there is
no extension of u to an clement of H'(R).

e e - - —— - S——
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2. In §5.6 it was shown that H'(Q) is compactly embedded in L3(Q2) when-
ever Q is bounded and an extension operator as in Theorem 6 exists. Thus the
examples in and before Problem 5.6.2 are sets Q without extension operators.

Example 1 suggests that very narrow inward pointing spikes pose an
obstruction to the existence of extension operators. A celebrated theorem of
Calderon shows that if every point of the boundary can be touched from the
exterior with an open cone of fixed size in the exterior then an extension
operator exists (see Agmon [A]). A theorem of Meyers and Serrin shows that
C*(Q) N H*(Q) is dense in H*(QQ) for any open €. These approximants need
not be well-behaved near ¢, so are markedly less useful than the C*(Q)
approximants which need not exist for wild domains.

PROBLEMS

1. Prove(15) and (16) and the assertions about 2(L*) convergence from that example.
Hint. Use Corollary 4 and Theorem 5.

When Q is not regular, solutions of the Dirichlet problem need not be smooth up
to the boundary. The next problem gives an important example.

2. Suppose that 0 < 8 < 27 and w is the wedge {:€ C\0: 0 < arg = < 0}. Then u =
Im(z*?) € C(@) is harmonic in w and satisfies Dirichlet boundary conditions at éw.
(1) For what values of s is u € H*(0)?

(i) For which @ is u e H'(0)?
(in) Construct an example of a bounded open Qandau e HY(Q) with Au e C*(f})
such that u ¢ C=(Q). Hint. Truncate u away from 0 and close the open end of w.
Discussion. For such wedge-like regions an analogue of the Tangential Regularity
Theorem is valid where the fields V must be tangent to the boundary even at

the singular point. This implies that the fields vanish at the singular point
(c.g. xd, + yi,).

3. Verify that u = xy(In r) with r = (x* + y?)"2 and 0 < B < | satisfies Au € C(R?)
and u ¢ C?(R?), showing that the “gain of two™ regularity theorem are false in the
C* category.

Discusston. Elliptic gain of two is correct in the Holder spaces C*** for 2 € 0, I[
(sce Bers, John and Schecter [BJS] and Gilbarg and Trudinger [GT)).

§5.10. Maximum Principles from Potential Theory

The study of elliptic equations in the previous sections was based almost
exclusively on L? methods. The basic estimates were proved by integration
by parts. This section is devoted to pointwise estimates which rest on so-called
maximum principles. These methods are very powerful and flexible but are
nevertheless useful almost exclusively for scalar equations of second order.
Their failure for systems and higher-order equations renders the analysis of
such problems more difficult. We begin by describing two classical results
which are the precursors of the general maximum principle of E. Hop!.
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When x e R, functions with nonnegative second derivative are convex
(thumb down). This shows that

Proposition 1

(i) If u € C*(Qa, b[) and d*ufdx* > 0, then u can have no local maximum.
(i) If d*u/dx? >0 and there is an % € Ja, b{ such that u() = u(x) for all
x € ]a, b[, then u is constant.

The convexity of u in Proposition | asserts that for any interval [ =
{|x = xo! < r} =< Ja. b[, u at the center x, is smaller than the average of u
on ¢l, that is,

U(xo + r) - u(xo ‘—'r)
2 .

“(-"o) <

This subaverage property has a generalization to functions with nonnegative
Laplacian. Such functions are calied subharmonic.

Theorem 2. If u e C*(B,(x,))N C(B,(x,)) is subharmonic. that is, Au> 0 in

B,(x,), then the value of u at the center of the ball is less than or equal to the
average talue of u over the boundary of the ball. That is,

1
u(xo) < — u do, CB| = l do.
( o) |3BI J;‘ |¢8B| J;,

ProoF. For 0 < p < r,let B, = {|x — x,| < p}. Greens’ identity reads

Cu ct
vAu — uAv dx = —v - u—da.
B (-'B Cn cn
[ 4 »

Take v = 1 so Av = 0 = &¢/én to conclude that {;5 éuicn ds 2 0.
For p > 0, let I{p) = [0y, u do. Then

&,I(p) =2, I

¢

udo = E,I u(x, + pw)p? ™! dw
s, §4-1

=J gﬂdo%-(d—l)f up?~? dw
¢ §¢-

B, cn

- d -
2‘-’-——1-" up®ldw = —-——ll(p).
P Jse-s 4

Thus the derivative of 1 with respect to p satisfies I' 2 (d — 1)1/p.

Multiply this differential inequality by the integrating factor p' ™ to find

(P 0Y = 4l + (L — d)p™*1 = p“(r _u - ”') >0,

Thus p'~I{p) is an increasing function of p for0 < p < r.
Let w, denote the d — | dimensional area of the unit sphere in R’ so
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p*'w, =|0B,|. Then the quantity p* ~“I/(p)/w, is cqual to the average value
of u over éB,. By continuity of u, p'~“I(p)/w, = u(xy) as p = 0.

We conclude that u(x,) < p' “I(p)/w,. Let p increase to r to prove the
theorem. O

Corollary 3 (Mean Value Property). If u € C}(B,(xo)) N C(B,(xo)) is harmonic
in B,, then the value of u at the center of the ball is equal to the average value
of u over the boundary of the ball. These values are also equal to the average
value of u over the ball.

PRrOOF. To prove the first assertion, apply the previous theorem to u and —u.
Alternatively, retrace the steps of the proof to see that p'¢I(p)/w, is in-
dependent of p.

For the second, express the integral over the ball as an integral of integrals
over spheres

J udx = J" (j‘ u d“) dp = J' “’4“(”‘0)9‘—l dp = u(x,)|B,|. O
B, o \Jés, 0

Application 1. Newton's Theorem on the attraction of spheres.

This corollary can be used to show that the gravitational field in the exterior
of a homogeneous spherical shell is equal to the field of a point charge located
at the center with mass equal to the mass of the spherical shell. This is one of
the important results of Newton's Principia. It allows one to replace spherical
planets by point masses without committing any error. The field of the
spherical shell of radius R with center x is equal to

C
@(x) J;'M P do(y),
where the constant c is the product of the mass per unit surface area and the
gravitational constant. Let u()) = ¢/|x — y|. Thenif x is in the exterior of the
ball the function u is a harmonic function of y € Bg(x) (Problem 4.6.1). Then
©(x)/|CBg| is equal to the average of u over the boundary of the ball. The mean
value property asserts that this is equal to u at the center. Thus ¢(x) =
c|@Bgi/1x — x| which is the desired result.

Application 2. Derivative estimates.

It is typical of elliptic equations that one can bound the size of derivatives
in terms of the size of the solution. The classical example is holomorphic
functions for which the formula

du(z) _ (— l) § u({) dC
dz 2ni lx=Cl=r ‘z -— c)
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shows that if u is a bounded holomorphic function on Q, then

ull L2

’ 1 L un
ol < am g )

(1)

Corollary 4. If u € C*}(Q) n C(Q) is harmonic, that is, Au = 0, then for | <j <d
and all x e Q

ou(x)

4l e
- o (2)
éx;

dist(x, ¢Q)’

PRrOOF. Suppose that r < dist(x, Q). Then ¢u is harmonic so

l 1
ou(x) = du(y)dy = — u(y)n.(y) do(y).
u( B s 2 (y) dy X (y)ni(y) do(y)
Since |n;] < | and |0B,| = d|B,|/r, this yields
Cu(x) Sd“u"uq}_).
ex; r
Since this is true for all r < dist(x, éQ), (2) follows. O

Application 3. A maximum principle.

Corollary S. Suppose that Q is a connected open subset of R® and u e C*() is
subharmonic, that is, Au > 0.

(1) If there is an % € Q such that u(%) > u(x) for all x € Q, then u is constant.
(1) 1f Q is bounded and u is continuous on Q, then u < max,q u.

PrROOF. Let m= u(x). Then {x € Q: u(x) = m} is closed in Q since u is
continuous.

Chooser > 0 such that B,(x,) == Q5o u < min B,(x,). Theorem 2 and the
local maximality yield the two inequalities

m—u(t)-J. udeJ' mdx_m
" Js, IBI T )5, 1B

Thus u must equal m almost everywhere in B,. By continuity u = m in B,.

Thus {x € Q: u(x) = m} is both open and closed in Q and we conclude that
u = m, since Q2 is connected.

Assertion (ii) is an immediate consequence of (i). O

A physical example reveals how reasonable this result is. Consider the
equilibrium position of a membranestretched over Q and maintained at height
g(x) at 3 If the onmly forces acting push downward, the height v(x) at
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equilibrium satisfies
At>0 inQ and u=g oncqQ.

The corollary implies that ¥ < max g throughout  Thus with such forces the
highest point is a point of support at the boundary.

ExaMpLE. If u € C3(Q) n C(Q) is harmonic, then

min u < u < Max u. (3)
x xn

This follows upon applying part (ii) to « and to —u, both of which are
subharmonic.

Using the corollary we can solve the classical Dinchlet problem when the
boundary data are continuous.

Theorem 6. If Q ., R? is a smooth compact embedded manifold with boundary

and g € C(cQ), then there is one and only one harmonic Sunction ue C*(QQ) N
C(SY) such that u = g on ¢Q.

Proor. Choose g, € C2(¢Q) with g, — g uniformly on éQ. Let u, € C*(Q)
be the harmonic functions with u, = g, on ¢S). Estimate (3) applied tou, — u,,
shows that

“uu - un“L'(ﬁ) < “gn — 9m “ L=
so {u,) is a Cauchy sequence in C(Q). Let u € C(Q) be the limit.

On ¢Q, u is equal to the uniform limit of the g,, so u = g on ¢Q.
Estimate (2) applied to u, — u,, shows that

~ cligy — gunllLecon
|Vu(x) — Vu,(x)] < dist(x, éQ)

so u, is a Cauchy sequence in C'(Q). It follows that the limit u belongs to
C'(Q). In particular, u € H'(x) for all xe Q.
Since u, converges to u in 2'(QQ) we have Au = 2’-lim Au, = 0. The Elliptic
Regularity Theorem implies that u € C*(£2). This proves existence.
Uniqueness follows from (3) applied to the difference u, — u, of two
solutions. O

PROBLEMS

The next two problems give alternate proofs of the mean value property of harmonic
functions.

1. If Au = 0 and B,(y) cc Q < R?, we may translate coordinates reducing to the case
y = 0.Define v, by v,(r, 0) = u(r, @ + @)(polar coordinates). By rotation invariance
of A, v, is harmonic. Let v be the harmonic function [3* v, de.

_(a) Prove that v is rotation invariant. Conclude that for0 < |x] S r,o = alnr + b
for a, b € R (see Problem 4.6.1).
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(b) Prove that a =0 and b = 2xu(0), thereby proving that u(0) = fu(r, ¢) de/2x
which is the mean value property.

DiscussioN. To make this work in dimensions higher than 2 one must sum the

rotates of u over all rotations. The measure is Haar measure on the orthogonal

group.

2. The “standard” proof of the mean value property considers fuAv — vAu dx over the
domain B,(y)\B,(y), withv = r>"* when d # 2 and v = In r when d = 2. Prove the
mean value property by performing this computation and passing to the limit & — 0.

The function r>~¢ in the above proof is a centerpiece of potential theory (Inr
when d = 2). The reason is that it is a fundamental solution of the Laplace equation.

3. Provethatford > 3, Ar*~* = §jw,, where § is the Dirac measure and w, is the d — 1
area of the sphere $‘*. Hint. 1>~ is locally integrable, so for y € CJ(RY),

{72, AY) = lim J Ix|~2AP(x) dx.
£=0 JR¢ 3,(0)

Then compute as in the previous problem.

DiscussioN. The functions r2~/ and In(r) appear in the solution of Problem 4.6.1. A

different proof of Ar*~¢ = §/w, is given in Problem 4.6.3. Yet another proof, valid

only for d = 3, is given in Problem 4.6.2.

4. Prove that there is a constant ¢ = c(x. d) such that if u € C*(Q) is harmonic. then

cilulgem

Ieul < e

(4)

The estimate from this problem gives an alternate proof of the Interior Elliptic
Regularity Theorem for harmonic functions.

5. Prove that if u € L°(Q) satisfies Au = 0 in the sense of distributions then u € C=().
Hints. Let j, be a standard approximate delta function. Show that u, = j,su is a
well-defined harmonic function on the set of points in  whose distance to the
boundary is at least &. Apply estimate (4) to the restriction of u, to compact subsets
of Q and then use Arzela-Ascoli.

85.11. E. Hopf’s Strong Maximum Principles

This section presents a far-reaching geheralization of the maximum principles

of the last section. We find results for second-order elliptic operators of the
form

aZ
dx; 0x;

Thus, M denotes the terms of order 1 and 2. Thanks to the equality of mixed

partials, we may suppose without loss of generality that a;; = a;. For the first
result, we suppose that

Bijs b‘ € Lm(ﬁ: R) and a;= Ay (2)
Y ay(x)520, forall (eRY xeld 3)

L= z a;(x)

+ Z b,(x)é% + c(x) = M + c(x). ()
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Proposition 1. Suppose that (1), (2), and (3) hold and that Q <= R is open. Then,
if u e CX(Q) satisfies Mu > 0, then u cannot have a local maximum in Q.

Proor. If u had a local maximum at X the first derivatives of u would vanish
at * and the matrix [3%u(®)/0x, 9x,] of second derivatives would be negative
semidefinite. We then use the following algebraic lemma. O

Lemma 2. If A, and B;; are both positive semidefinite symmetric matrices, then
Z. A..B.. > 0.
L,jrriy&ij

PROOF. The key observation is that
Z Ai,-Bu = (AB),; = (AB); ;.
J

s0 Y, jA;;B;; = tr(AB).
Choose an orthogonal transformation. €. so that CAC ™' = diag(/;) with
4; 2 0. Then
tr(AB) = tr(CAC~'CBC™) =Y 4B,

where B is the ith diagonal element of ¢ BC~!. Then ; > 0 since €BC ™! is
positive semidefinite. a

Returning to the proof of Proposition 1, we see that the lemma implies that
Mu(x) < 0 if u has a local maximum at x. 0O

Corollary 3. Suppose that (1), (2), and (3) hold and that Q < R? is a bounded
open set. If u e C¥() n C(Q) satisfies Mu > 0, then maxq(u) < max q(u).

The next results and proofs are due to E. Hopf. We follow the exposition
of Bers, John, and Schecter [BJS). For the remainder of the section hypothesis
(3) is strengthened to

a;eCQ)and u20, Y a,;(x)&& 2 ulél?, forall xeQ, feR. ()
This implies that M is uniformly elliptic. a

Theorem 4. Suppose that (1), (2), and (4) hold and that Q is a connected open
subset of RY. If u e C*(Q) N C(Q) satisfies Mu > 0 in Q and there is an X € Q
such that u(®) > u(x) for all x € Q. then u is constant.

This theorem asserts that if u is not constant then u achieves its maximum
value in Q on 90 and not in the interior. The next result shows that if X is a
boundary point where the maximum is attained, then the outward normal
derivative at £ is strictly positive. The fact that u(R) is maximal implies that
the derivative is nonncgative.
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Figure 5.11.1

Theorem 5. Suppose that u € C*(Q) N C'(Q) satisfies Mu > 0 in Q and attains
its maximum value at a point % € ¢Q and there is a Euclidean ball, B < Q with
B N CQ = x, then either u is identically constant or cu()/cn > 0.

Figure 5.11.1(a) shows that if Q is regular at x according to the definition
in §5.9, then there is such a Euclidean ball. The dernivative 6/Cn in the conclu-
sion is the directional denivative in the direction from the center of the ball to
X. This agrees with the standard definitions when Q is regular at X. Figure
5.11.1(b) shows that Q can have inward pointing irregularities and still satisfy
the hypothesis. Note that when Q is irregular. as in Figure 5.11.1(b), choosing
different balls yields a cone of outward normal directions and u must be strictly
increasing in all of those directions.

PROOF OF A WEAKENED VERSION OF THEOREM 5. We first prove Theorem §
under the additional hypothesis

u(x) < u(R), forall xeQ. (5)

Choose concentric balls B, cc By, « Q such that B,ndQ = % (Figure
5.11.2). Translate coordinates so that the center of the balls is the origin and
letr = |x].

Consider the function

v(x) Se ™ — e’ >0, r,=radiusof B,.
Then

v=0 ondB,, v>0 inB, and g<0 on 0B,.
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~

Figure 5.11.2

To find Mv = Me™", compute the derivatives
be ™ = —ae vo(r?) = —2ax,e”’,
and
d0,6™" = +4a’x,x;e”V" — 25,28,
Thus |
Mu > (4a%() a;;x;x;) — Ca)e™™".

Since the sum is at least as large as u|x|?, which is bounded below on the
complement of B,, it follows the Mv > 0in B, \ B, if a is sufficiently large. Fix
such an a.

Since u is strictly less than u(2) on 6B, we may choose € > 0 so that
ev+ u<u() ondB,.

Then hypothesis (5) shows that max(ev 4 u) occurs in By\B, or at £.

Since M(cv + u)> Mu >0 in B,\B,, Proposition 1 implies that the
maximum of ev + « in By\ B, must occur on the boundary.

The maximum at the boundary must occur at £, so d/dn(ev + u)(%) 2 0.
Thus at %, du/dn = —¢ dv/on > 0. O

PROOF OF THEOREM 4 FROM THE WEAKENED THEOREM $. If m is the maximum

of u on Q and u(x,) = m for some x, € Q, we must show that u is constant.
Let S = {x €€ u(x) = m} 3 xo. Then § is closed since u is continuous. It
suffices to prove that § is open.

If x; €S let d= dist(x,, ). It suffices to show that B(x,.d/2)c S. If
x, € B(x,, d/2), then

6 = dist(x,, §) < dist(x,, x,) = g

1t suffices to show that § = Q.
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If & > 0, consider the restriction of u to B(x,, 8). Since B is contained in the
interior of Q. u is twice differentiable on the closure of B. By definition of 6
there is an £ € 8B(x,, ) S, so u(x) =m and u <m on B(x,,é). By the
weakened form of Theorem 4, du/dv > 0 at 2. However, % is an interior point
of Q at which uis maximal so Vu(£) = 0. This contradiction shows that 6 must
vanish. a

PROOF OF THEOREM 5. Theorem 4 implies that if u is not constant, then ulqg is
strictly less than max {u(x): x € Q). The hypotheses of the weakened Theorem
5 are satisfied and it follows that du(®)/év > 0. 0O

Theorem § required u to be differentiable on the closure of Q. However, the
proof works for u € C%(Q) n C(Q), provided that the conclusion is interpreted
in the sense

0< (_a_) u(%) = lim ing “CF A1) = u(X)
on h=0Q~ h
The maximum principles have an enormous variety of applications. Several
are given below. The book of Protter and Weinberger [PW] is devoted to
them and is highly recommended as casy and enjoyable reading.
Our first application is a comparison theorem. Note that terms of order 0
are allowed provided that they have the right sign. To keep track of the signs

remember that M, with positive definite coeflicient matrix like A, acts like a
negative operator. The differential operator (1), with

ceC)) and c(x)<0 forall xeQ) (6)

is then expected to be negative. This is borne out both By the sign of the
eigenvalues of L as part of a self-adjoint boundary value problem and the
next theorem.

Theorem 6 (Comparison Theorem). Suppose that hypotheses (1), (2), (4), and (6)
hold. If u,v € C*(Q) ~ C(Q) satisfy Lu < Lvandu 2 vonéS, thenu > vinQ.

ProoF. If w = {x € Q: u < v}, it suffices to show that w is empty. In w.
Mu—v)=Lu—-—v)—clu~v)<s0 and u—v=>20 onodw.

If w is nonempty, Theorem $ implies that u — v > 0 in w contradicting the
definition. 0

ExAMPLES/APPLICATIONS. 1. If Au < 0inQandu > Oon d€), thenu > 0in.
Proof. v = 0 is a lower comparison function.

In this way we recover Corollary 5.10.4. A physical interpretation of this
result, complementing the one after Corollary 5.10.4, is the following. The
equilibrium temperature in a domain €, subject to a nonnegative time-
independent heat source and kept at nonnegative temperature at the bound-
ary, is strictly positive in the interior.




244 5. The Dirichlet Problem

Using min x, u as a lower comparison and max a  as an upper comparison
yields the following corollary.

Corollary 7. If hypotheses(1),(2), (4), and (6) hold and u € C*(Q) N C(Q) satisfies
Lu = 0, then for all x in Q,

min ¥ < u(x) < max u. (7)
n o

2. The Fredholm alternative proved in §5.6 shows that to prove the solv-
ability of Dirichlet's problem it is sufficient to prove a uniqueness theorem.
The maximum principle is one of the best tools for that purpose.

For example,if c < 0in Q, Lu =0inQ, and u = 0 on éQ. then Corollary
7 applies and shows that u = 0, proving the desired uniqueness and therefore
unique solvability of the Dirichlet problem. provided ¢ < 0.

3. In the same way, uniqueness of solutions of the Neumann problem
follows from Theorem 5. Suppose again that (6) is satisfied and that Lu = 0
in Q and ¢u/cn = G at the boundary. Then a nonconstant u cannot have a
positive maximum at the boundary, since in a neighborhood of such a point
one would have Mu = Lu ~ cu >0, so Theorem S would imply that éu/cn > 0
at such a maximum point. Applying the same reasoning to —u shows that a
nonconstant solution u cannot have a negative minimum at the boundary.
The conclusion is that u is constant. There can be nonzero constant solutions
only if c(x) is identically zero. This proves uniqueness when ¢ < 0 and is not
identically zero. The Fredholm alternative then proves solvability. The Neu-
mann problem is uniquely solvable provided c(x) < 0 and c(x) is not identically
equal to zero. If c <0 and a > 0 are not both identically zero, the same

argument proves uniqueness for the Robin Problem with boundary condition
cu/cn + a(x)u = 0.

4. If uis a solution of the nonlinear Dirichlet problem

Au—u*=f<0 inQ and uz=20 onéQ,

thenu >0in Q.
Proof. Let c(x) = —u?(x} < 0and apply the Comparison Theorem with 1 = D.

5. Find upper and lower bounds for the solution u of the Dirichlet problem
alx)u - Au=f inQ, u=g ondcQ,

where A > alx) > a > 0.

Solution. To estimate u from above use a comparison function w which is
constant, w = § > 0. Then

alx)w — Aw>aff infd
If§ > supf./aand B > supg,, the Comparison Theorem shows that u < w.
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Thus

u < max {SUP‘(,!'), sup g+}.

i {0
a

Similarly,

, inf g} <u
In particular,
Nulle < min{a™ Il oq lghy=}-

6. Derive analogous estimates when a(x) > 0 but is not necessarily stnictly
positive. Here the comparison functions are more tricky. Use constants to
dominate the boundary values. For the inhomogeneous term, f, we take
advantage of the fact that A|x|? = 2d.

Choose xq € Q and R > 0 so that Q < Bg(x,). Let

w=a(R2—|x—-x})+8, 220, 20
Take B = sup g.,so that ¢ > u on cQ. Then
(a(x) — A)w = a(x)w + 2ad > 2ad,

so if 2 = sup(f )/2d, the Comparison Theorem shows that w > u. In this way,
we find

X inf(f_ .
inf(g_) + l(—--é‘--—)(k2 - |x = x0}%) < u < sup(g.) + %Q(Rz — |x = xof%).
7. The example
dl
R—;u-u=0. u = sin X, Q = ]0. =[,

which has a positive strict local maximum at x = n/2, shows that the hypoth-
esis ¢ < 0 cannot be dropped from Corollary 7.
8. The example
d* '
I =0, u=x{x—N{x+1), Q =10, I,

which has a positive strict local maximum at x = }, shows that the theory of
this section does not extend to higher-order elliptic operators.

PROBLEMS

The maximum principle is one of the most incisive tools for studying noniinear
problems. Here we give three standard applications.
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L.

ro

Theorem. If f is a bounded continuous function on R, there is a constant ¢ depending
only on || fil Lag) and Q, so that any u € C3Q) A C(Q) satisfying Au + fiu) =0 in Q)
and u = 0 on X satisfies |ully <, S c.

Theorem. If f: R — R is nondecreasing and continuously differentiable and u,
v € C3(Q) N C(Q) satisfy

—Au+ f(2 -Av+f(v) InQ uwu=2v ondfd
then u 2 v in Q. If equality holds at an interior point, then u = v.

Hint. Subtract the equations for u and v and write f(u) — f(v) = c(x)(u ~ v) with

i
c(x) = J‘ S (e(x) + 8(u(x) — v(x))) d6.
(4]

Discussion. This idea of subtracting then using the mean value theorem to get a
linear equation for the difference of two solutions to nonlinear problems is surpris-
ingly useful. It also appears in the hint for Problem 3.6.4. Note that the coefficients
of the linear problem depend on u. A related method is to differentiate nonlinear
equations to obtain linear equations for the derivatives of the unknown. The
coefficients of the resulting linear equation depend on the unknown function.

. Prove that if u € C*(Q) N C(Q)satisfies the equation of constant mean curvature H

(see Problem 5.1.4) with H < 0, and u attains its maximum or minimum value at
an interior point, then u is constant. In particular. minimal surfaces cannot have
intenior local extrema.

DiscussioN. Many other applications to quasi-linear problems from mechanics and
geometry can be found in the books of Protter and Weinberger [PW] and Gilbarg
and Trudinger [GT).




APPENDIX
A Crash Course in Distribution Theory

This appendix presents some of the elementary notions of distribution theory.
Beginning in Chapter 2 these ideas will be used extensively. More detailed
brief introductions can be found in [HI, pp. 1-17], [R, pp. 135-162], and
[Sc2, pp. 71-140]. More complete treatments are [Don, Scl, GS, H 1], though
that level of coverage is not needed.

The Theory of Distributions grew from many disparate sources. One is the
treatment of impulsive forces. Newton's second law asserts that the rate of
change of momentum is equal to the force applied, dp/dt = F. Consider an
intense force which acts over a very short interval of time ¢ <t < ¢t + At. An
example is the force exerted by the strike of a hammer. The impulse, [, is
defined as I = | F(t) dt so

p+A)=p)+ [

The exact shape of F(t) does not enter. In the limit, as At tends to zero, we
arrive at an idealized force which acts instantaneously to give rise to a jump
I in the momentum p. Formally, the force law satisfies

F=0 fort#0 and jF(t)dt=l. (1)

This idealized impulsive force is denoted I4,, and 4, is called Dirac’s delta
function though no function can satisfy (1). The idealized equation of motion
is dp/dt = 18,. The solution satisfies p(t+) — p(t—) = I. Such idealizations
are quite successful in a variety of problems of mechanics and electricity.
The mathematical framework developed by L. Schwartz in the 1940s has
an additional motivation from mechanics. It has long been realized that if u(x)
is a physical observable that depends on x, then it is impossible to measure
point values of u since any measuring device has finite size. This is true even
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in classical physics but the probiem becomes more serious in Quantum Field
Theory where the point values of the field may not exist. The Ehrenfests
suggested that smeared or averaged fields, [ u(x)ep(x) dx, with regular weight
functions ¢ are well defined and meaningful. Both observations about the
measurement process suggest the importance of averages j u(x)@(x) dx. The
observable u is “observed” as a linear functional

Qs j u(x)@(x) dx. (2)

An example is the impulsive force field F = I3, of (1) which corresponds to
the functional

p—lo(=" j F(t)o(r) dr”.

This example suggests that the test functions ¢ must at least be continuous.
Examples of dipoles and more general multipoles, ¢ — ¢*p(x), suggest that
the test functions be infinitely differentiable to permit commonly considered
observables. In order for observables which are large at infinity to give finite
answers, it is reasonable to impose that the test functions be required to have
compact support, that is, supp(p) = cl{x: ¢(x) # 0} is compact. In summary,
we are led to the idea that an observable u on an open subset Q= R is a
linear functional on CP(Q). Following Schwartz, C3°(Q) is denoted 2(R2) and
C*(Q) is denoted &£(Q).

Only those functionals which give nearby results for nearby tests can
represent reproducible measurements. Thus we are led to assume that the
linear functionals are continuous.

Definition. A distribution on an open Q < R? is a linear map I: 2(Q) — C,
which is continuous in the sense that if {¢,} = 2(Q) satisfies ,

there is a compact K < Q such that for all n, supp(e,) < K, (3)
and

there is a @ € 2(Q) such that for all x € N*, 3%,
converges uniformly to é*o,

then I(¢,) = l(@). The set of all distributions on Q is denoted 2°(Q). When
@a. @ satisfy (3), (4) we say that ¢, converges to ¢ in 2(£2).

(4)

The action of a distribution [ € 2'(Q) on a test function ¢ € 2(Q) will often
be denoted (I, ¢). The set 2'(Q) is clearly a complex vector space.

ExampLES. 1. If u € L) (Q), then there is a natural distribution /, defined by
l,, @) = Ju(x)o(x) dx. In this sense, the distributions are generalizations of
functions and are sometimes called generalized functions. Two locally integra-
ble functions define the same distribution if and only if the functions are equal
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almost everywhere. We say that a distribution [ is a locally integrable function
and write | € L,.(Q) if | = I, for some u e L (Q). Similarly, we say that !
is a continuous (resp. C*) function if I =i, for a ue C(Q) (resp. C=(Q)).
For example, the distribution defined by the characteristic function of the
irrationals, xz . 15 @ C* function. In fact, this distribution is equal to the
function 1.

2. If uis a Radon measure on €, then (l,, 0> = [¢(x) du(x) defines a
distribution. If M is an embedded k-dimensional submanifold in Q and do is
the k-dimensional area in M, then ¢+ {,, ¢ do is a distribution.

3.4. If x € Q. then (I, 9> = ¢(x) is a distribution denoted &, and called the
Dirac delta at x. When x is not mentioned it is assumed to be the origin. More
generally, (I, ) = ¢*(x) is a distribution.

The fact that an infinite number of derivatives are needed in (4) might seem
excessive. [n fact, for any fixed distribution and compact K < €, a finite
number sufTice.

Proposition 1. 4 linear map I: 2(Q) — C belongs to ' (Q) if and only if for every
compact subset K < Q there is an integer n(K. l) and a ¢ € R such that for all
@ € 7(Q) with support in K

KLY S clgfen  ll@ica= Y max|¢ol. (5)

{zlsa

PrOOF. The “if " part is clear. To prove “only if" suppose that (5) is violated

fora compact K. For each integer n. choose ¢, € Z(Q) with support in K such
that

Il @) > | and H@allcn < 1.

Then ¢, satisfly (3). (4) with ¢ = 0. but <l ¢, does not converge to zero so /
is not a distribution. O

Definitions. If there is a ¢ such that (5) holds. ! is said to be of order n on K.
If tis of order n on every compact K c Q, then that lis of order n on Q. The
sct of distributions of order n is naturally identified with the dual of C3(Q). Tt

is sometimes denoted C™*(2). A distribution is of finite order on € if it is of
order n on Q for some n.

ExampLEs. 1-4. The examples above are of order 0, 0, 0, and |2).
5. The functional on Z'(R), defined by
l(w)slimf ?ﬁd _PVJ’ (t)
c—0 |g|>¢

is called the principal value of 1/x. It is a distribution of order 1 on R (Problem
14).
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e3(2)+()

defines a distribution on JO, 1[ which is not of finite order. It follows that there
is no distribution on R whose restriction to 2(]0, I[) is equal to L.

6. The functional

Definition. A sequence of distributions |, € 2'(Q2) converges to | € 2'()) if and

only if for every test function ¢ € 2(Q), l.(¢) = (). This convergence is
denoted |,—~lor 2'-lim I, = l.

ExaMPLES. 1. Ifj € 2(R®) with | dx = 1, let j(x) = e "j(x/e). Then j,—&,. A
more general result is proved in Proposition 2.2.3.

2. We will show in Proposition 4 that every distribution is the 2°(€) limit
of a sequence of elements in 2(Q). This suggests again the interpretation as
generalized functions.

3. The definition of P.V.(1/x) shows that &’-lim x> ,(1/x) = P.V.(1/x).

The great utility of distributions rests largely on the fact that the standard
operations of calculus extend to 2'(Q). In particular, one can differentiate
distnibutions. For the study of differential equations that fact is particularly
important.

The recipe for defining operations on distributions is nearly always the
same: pass the operator onto the test function. For example, for I € 2'(R¢) the

translate of { by the vector y, denoted t,1, is defined as follows. If | were equal
to the function u, then

(@)= I u(x — y)o(x) dx = I u(z)o(z + y)d= = (L t_,0).

This motivates the definition, (1 /, 9> = (I, 7_,¢). It is easy to verify that t,]
so defined is a distribution and that the definition agrees with t,u when ! = [,.

To differentiate a distribution / on R?, form the difference Quotients which
should converge to ¢l/dx;. Let e;=(0,...,0,1,0,..., 0) be the jth standard
basis element in R?. The difference quotients are given by

<t—1——""hl -1 <p> = <l. AL ";‘l-“-’>. (6)

The test functions on the right converge to —¢/¢x;, so the continuity of |
implies that the right-hand side of (6) converges to {l, —¢¢/@x;). This suggests
that {Cl/¢x;, @) be defined by (I, —¢@/x;). This defines a distribution and if
ue C'(Q) and | = I, then the derivatives of | are equal to the distributions
lawex,- Thus the operator /dx; on 2’ is an extension of 9/dx; on 2.

As an example consider H(x) = x;0, o(x), the Heaviside function on R. The
difference quotient (t_,, H — H)/h is equal to the function h™ x(0.5 Which
converges to ¢ in the sense ol distributions. Thus dH/dx = é. Note that the
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difference quotients converge to zero almost everywhere. Since H is not a
constant, zero is surely not the desired derivative. The pointwise limit gives
the wrong answer and the distribution derivative is the right answer.

The operations on distributions discussed above are special cases of a

general algorithm. The following version appears in unpublished notes of P.D.
Lax.

Proposition 2. Suppose that L is a linear map from 2(Q,) to D(K2,), which is
sequentially continuous in the sense that ¢, — @ implies L(p,) — L{p). Suppose,
in addition, that there is an operator L', sequentially continuous from 2(Q,) to
D(Q,), which is the transpose of L in the sense that (L(¢), ¥ = {o, L'()) for
all g € 2(Q,), ¥ € 2(Q,). Then the operator L extends to a sequentially contin-
uous map of 2'(QQ,) to 2'(NQ,) given by

L Y> =LY  forall 1eZ'®,) aond ¢yeI€,) (7)

The uniqueness of the extension is proved in Proposition 8.

Proor. The sequential continuity of L' shows that L(l) defined in (7) is a
distribution. If | = I for some @ € 2(Q,), then

Uy =L LYY = L p(x)L'(¥)ix) dx = J‘a Lip)(x)¥(x) dx, (8)

the last equality from the hypothesis that L’ is the transpose of L. Thus L(l)
is the distribution associated to L(p) which proves that L defined by (7) extends
L),

Finally, if I, —lin 2'(Q,), it follows immediately from (7) that L(l,)— L(/),
proving the sequential continuity of L. a

ExampLes. 1. If a(x) € C*(Q), (= £(Q)), then the map L(¢) = ap is equal to
its own transpose. This statement is equivalent to the identity

L(ph ¥ = I(a(x)¢(x))(¢) dx = I((ﬁ(x))(a(xhl') dx = (o, L)

Thus forl € 2'(Q), al is a well-defined distribution given by {al, @) = (I, ap).

2. IfQ, = y + Q, and L = 7, is translation by y, then L' = 1_, is sequen-
tially continuous, so for | € 2'(RQ,) the translates of | are well defined by
(t,h, 9) = (, t_,0). Similarly, the reflection operator (Ru)(x) = u(—x) is its
own transpose, so R is a well-defined distribution on the reflection of £2.

3. If L = 3*(see §1.3 for this notation), then integration by parts shows that
the transpose is L' = (— 1)*/d* which is sequentially continuous on 2, so the
derivatives of distributions are defined by

0%, o) = (I, (—1)"9"p).

Notice that since §,6, = 9,0, on 9, it follows from the definition of distribu-
tion derivative that for any I, 90,1 = 6, 9l.
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Having defined multiplication and derivative we can compute a product
rule for dj(al). Omitting the subscript we find

al) ¥)> =<1, —ady) = (I, —élay)> + (L(Ca)y) = (acl + (Ca)l, ¥).

Thus we have the familiar rule é(al) = aédl + (éag)! and, by induction, the usual
Leibniz formula for ¢*(al) is valid

The derivatives combined with Example 2, show that if P(x, D) = ) a,(x)é*
is a linear partial differential operator with coefficients in £(€), then P maps
Z'(Q) to itself with (Pl, @) = (I, P'¢p). The transpose of P is given by

Py =3 (—17¢%(a ).

The transpose is also denoted P' in this text.

4. 1l n: Q, - Q, is a diffeomorphism and L{p) = ¢ o n, then L is sequen-
tially continuous and

L) ) = j dx,

2,

D .
e (y)dy =j e(xX)¥(n7'(x)) 5:;

Q,

where | Dy/Dx| is the Jacobian determinant of the transformation y = n~'(x). '

Thus the transpose of L is the map ¢ —s (1! (x))| Dy/Dx|. Therefore, for any
le 2'(Q,), ! o n is well defined by

(ony)=(l|det Dy~ Yy on™').

This example is important if one wants to definedistributions on a manifold.

5. Convolution 1. Suppose that Q = R¢ and ¢ € 2(R?). Let L be the oper-
ator L(y) = ¢ = . Leibniz’ rule for differentiating under the integral implies
that L maps 2(R?) continuously to itself. Fubini’s Theorem shows that the
transpose of L is convolution with #¢ (exercise). Thus ¢ »! makes sense
for any ! € 2'(RY) and is given by (@ ¢ L, ¢) = (I, (Rp)+ ). As an example,
we compute ¢ 9,

(p26,¥) = (5, (RP)2 Y = ((Rp)+ y)(0) = J‘w(y)w(y) dr = o, ).

Thus ¢ =6 = ¢. The definitions -yield
(@D ¥)> =Co 2L, (=2VY) = I, (R} s (=YY = <L (=P ((Ro) * ¥)).

A similar sequence of computations shows that the last term is equal to
{p 3%, Y). On the other hand. applying the derivative in the last term to the
A term of the convolution, and then unraveling, yields {((¢*p)+ /, y). In this
way, we prove that in the sense of distributions

0@ sl) =22 = (")l

Applied when | = §, we find that ¢ » %6 = 0%¢.

Convolution on the right, L({) = ¢ » ¢, is equal to ¢ ¢ and also extends.
In particular, ls @ =@ s l.

2 R SR b =
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Proposition 3. If | € 2'(R¢) and ¢ € 2(R’), then |+ ¢ is equal to the C* function
whose value at x is (I, t,(Ro)).

Proor. First observe that if x, — x, then 1, (R¢) - t,(Jlrp) in 2(R*), which
suffices to show that the function y(x) = {l, 1,(R¢)) is continuous on R
Similarly, if A" is the forward difference operator (t_,,, — I)/h approximat-
ing ¢;, then
AYy = (, 1, A (R)),

and
1, ANRp) = 1,0(Rp) in 2®RY) as h—0.

This suffices to show that 7 € C'(R*) and &7 = ({, 7,6,(R¢)>. By induction on
n it follows that for all neN, ye C‘(Rj) and ¢*y = (I, 1,¢*(Ry)) for all
|z] < n.

Next we show that the distribution defined by 7 is equal to the convolution
| « 0. Toward that end, write (7, ¥) as a limit of Riemann sums

Gy =lim 3 ¢(3)<1. tal o)t =lim T <z.w(§)r,,,(a¢)>n"

Note that n“Znﬁ(z/n)t,,,,(dqp)-o(J(p) Y in 2(R?) (exercise), so the
limit on the right is equal to (I, (R@)sy) = (@l ). Thus, 7 = @sl
as distributions. a

Proposition 4. Suppose that y,j € 2(R‘), {j(x)dx = 1, x(0) = 1. j(x) = ¢7%j(xie),
and z,(t) z{ex). Then for any l € 2'(R*), zl. j.+ 1, and ,(,(j,:l)comerge tol

Z'(RY) as ¢ tends to zero. In particular, any such | is the limit in Z"(R?) of
elemems of 2(RY).

The function g, is a vast plateau of height very close to | over a diameter
of order 1/¢. Thus multiplication by g, is nearly the identity operator. Convolu-
tion by j, is close to convolution with the Dirac delta which is the identity
operator. These two approximation processes, plateau multiplication and
convolution with an approximate delta, arc simple but remarkably useful
methods in analysis.

PrROOF OF ProPosITION 4. We treat only g(j,*!). The definitions yield
G, @) = U, (Rj,) * (x.0)) for any ¢ € 2(R*). The result is then a con-
sequence of the fact that (#),) » (x.¢) = ¢ in 2(R’). The verification of that is
an exercise in advanced calculus which is left to the reader. 0O

If I is a distribution on Q and w is an open subset of Q, then | is equal to
zero on @ means that for all ¢ € 2(w), {I, 9> =0.

Definition. The support of | € 2’(Q) is the complement of {x € Q: ! is equal to
zero on a neighborhood of x}. The support is denoted supp(l). The set of all
I € 2'(Q) such that supp(l) is compact in Qis denoted &'(€2).
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ExaMPLES. 1. The support of every | is a closed subset of Q.
2. supp 6, = {x}.
3. Iflis cqu;l to a continuous fuaction f, then supp(l) = cl{x: f(x) # 0}.
4. supp(c*l) < supp(l).

Proposition 5. If | € 2'(Q) and ¢ € 2(Q) have disjoint supports, then (I, ¢ = 0.

ProoF. For each y in supp(¢) choose an open w, c Q containing y and on
which ! is equal to zero. Choose a nonnegative h, € 2(Q) with supp(h,) < w,
and h(y) > 0. The sets {x: h,(x)} > 0} are an open cover of the compact set
supp(e). Thus there is a finite subcover.

Call thecorresponding functions h,, ..., h,,. Define y; = @h;/(h, < - + h,,)
on | J {h; > 0}, and y; = 0 otherwisc.

Since the sum of the h’s is positive on supp(¢), ¥, is smooth and is supported
in the union of the w; containing supp(h;).

Since [ is equal to zero on w;, (I, ¥;> = 0.

Since ¢ = )_¢; the result follows. 0O

Recall that £(92) is a complete metric space whose topology is defined as

follows. Let K, =« K, < - be an exhaustion of Q by compact sets. For each
n, define a seminorm || - ||, on &(Q2) by

loll,= ) max|i*ol.

la.sn K,

A metric for £(Q) is given by

diSt((P. w) = Z 2" "(P - 'ﬁ"n

A sequence converges in &(Q) if and only if each partial derivative converges
uniformly on compact subsets of Q. An argument like the proof of Proposition
1 shows that a linear functional £: £(Q) — C is continuous if and only if there
is an n and a c such that for all ¢ € £(Q), |{4, ¢)| < cloll,. In particular,
continuous linear functionals on £(Q) are distributions of compact support.
The converse is also true.

Proposition 6

(i) If adistribution! € 2'(Q) has compact support inQ, then u has finite order.
(i) 1 e 2'(Q) has compact support if and only if | extends uniquely to a contin-
uous linear functional on &(f2).

This result explains the notation &°(Q) for the distributions of compact
support.

ProoF. (i) Given [ € 2'(Q)) with compact support, choose ¥ € D(2) with ¢
equal to 1 on a neighborhood of supp(l). Then Proposition § implies that for
any ¢ € 2(Q), {I, ) = {I, y9). Let K = supp(y), and choose n(K, I) and ¢
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such that (5) holds. Then, for any ¢ € 2(Q),

1K1, > = KL o)l < cliroplice < ¢ ll@lcn.

(ii) Themap ¢ € £(Q)— <L Yo) is then a continuous extension of [ to £(£2).
Since 2(Q) is dense in &() (exercise), the extension is unique. O

Distributions of compact support extend to distributions on R’. The exten-
sion by zero is uniquely determined.

Proposition 7. If | & &(Q) there is one and only one [ € Z'(R*) such that | =1
on Z(Q) and supp | < Q.

Proo¥. If I is such an extension, choose ¢ € Ce (Q) with supp(y) < Qand ¢
equal to 1 on a neighborhood of supp(l). Note that supp(/) contains supp(/).
For any ¢ € 2(R?)

(o) = . o) = . Yod.

Thus [ is uniquely determined. Furthermore. defining Iby . @) = yo)
proves existence. O

It is common practice to take this extension for granted and. therefore, to
consider £'(Q) as a subset of &'(R¢). The next propositions use the notions
developed above to prove uscful results about distributions.

Proposition 8. 2(Q)is sequentially densein 2'(Q). In particular, the extensions
of the operators L in Proposition 2 are uniquely determined.

ProOF. Choose an exhaustion @, cc Q, =< -+ of Q. Choose Y € Z(Q;.,)
with ¥, = 1 on Q,. For l € 2'(Q), y,/ —[ (exercise). Denote by /, € &’ (R?), the
extension by zero of Y, 1.

Choose ¢, — 0 with & < dist(Q,. ¢,.,). Then j, *l € 2(§.;)- As in the
proof of Proposition 4, j, » l,—1 in 2'(R’) and therefore in (). a

Proposition 9. The only distributions on Q, with support equal to the single point
x, are finite linear combinations of the derivatives of the Dirac delta at x.

PRroor. Without loss of generality we may suppose thatl € &'(R*). Translating,
if necessary, we may suppose that x = 0. Then {, @) =0 for all ¢ € &(RY)
which vanish on a neighborhood of 0.

Choose an integer n such that !is of order n. For @ & &(R), express ¢ as a
sum of its Taylor polynomial of order n at 0 plus a remainder

P = Z (a'__‘.’;(?.))—x-‘:-fr(x).

lsisa
Then .
Ldo)=,r)+ ; ¢, 0°p(0) where ¢, = <l. f-'->
jel<n [ Y

The proposition follows with ! = Y ¢(— )6 if we can show that (I, r) = 0.
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Choose a function { € £(R?) such that { vanishes on a neighborhood of
0 and ¢ is identically equal to | for |x| = 1. Then, for m=1, 2, ...,
<l {my)r(x)) = 0. .

The difference {(mx)r(x) — r(x) is supported in |x| < 1/m. To show that
Kl r) = 0,1t is sufficient to show that {I, {(mx)r(x) — r(x)) tends to zero as m
tends to infinity. To do that, it suffices to show that for all 2 with |a] < n,
max|c*({(mx)r(x) — r(x))| tends to zero as m — .

The derivative of the difference is equal to a sum

Cimx) — Dér(x}+ Y cm®'SP{(mx)ér(x).
p+71=1.181>0
Since the derivatives of r up to order n vanish at 0 the first term is O(m ™"~ "1¥),
The summands of the second term are O(m”)O(m™""'*'"'). Since
I8} + 171 = || < n the result is O(m™"') and the prool is complete. O

Proposition 10. If Q is connected then the only distributions on Q, all of whose
partial derivatives vanish, are the constants.

PRrOOF. It suffices to show, for any connected open w < Q. that lis constant
on w (exercise).

Given such an w, choose y € C§(Q) such that g is equal to | on a neighbor-
hood of @.

Then ;! extends naturally to an element of £'(R") with support in Q and
with derivatives vanishing on a neighborhood of @.

With j, as in Proposition 4, j, » (x/) converges to z! in 2’(R?). Therefore, as
elements of Z’'(w), j = (xI)—I.

On the other hand. for small ¢, j, = (x!) is a smooth function whose deriva-
tives vanish in w. Thus j, s (gl) is equal to a constant ¢, in Z'(w). Choose
¢ € Z(w) with | @ dx = 1. Then, as ¢ tends to zero,

¢, = Jer(xl) 0> = (xl @) =c.
Since ¢, = j, * (1!)| 4, this suffices to show that | = ¢ in w. O

Finally, we take a second look at convolutions to show that &' (R¢) » 2'(R%)
makes sense. From the definitions it is not difficult to show that supp(p ¢ 1) <
supp(e) v supp(l). Thus ¢ * | € 2(R*) when [ € &' (RY).

For such an [ consider the map L(¢) = ¢ +l. This is a sequentially contin-
uous map of 2(R¢) to itself and it has transpose L'({) = ¢ « (RI) (exercise).
The transpose being sequentially continuous, it follows that L extends to an
operator from 2'(R?) to itself. For u € 2°'(R*) and ! € &'(R*), u « ! is given by
(usl, @) = {u, ¢ «(R)).

Symmetrically, left convolution l+u is defined as an extension of [s. One
has leu = uslforalll e £'(R’) and u € 2'(RY).

PROBLEMS

Many details in this Appendix were left as exercises. Working them out is good practice.
There are two things one needs to do to learn distributions. One must manipulate the
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definitions in simple proofs and one must gain familiarity with computations with
simple distributions. The previous pages provide many exercises of the first sort. The
next problems have the second skill as goal.

2.
3.

4.

10.

1.

12,

Compute (d/dx)*|x) forj. k=1,23....
Compute (d/dxisin x{fork = 1,2,3 ...

(i) Let u(x) be the function which is equal to In(x) for x > 0 and zero for x < 0.
Then u is locally integrable. Compute the distribution derivative du:dx. Answer.
(du'dx, ¢ = [§(P(x) — ${0)/x dx + frv)ixdx .

(i) Compute the distribution derivative of the function In(}x]) € L}(R).

Find the most general solution T € Z°(R) of the following equations:

M) xT=0, (i) xdTdx =0 (it}) xX*T=08  (v) xdTdx =d:

(v) dTidx =6; (viy dTldx+ T=4.  (vi) T - (did<)* T = 6.

Hint. For the problems with 5 on the right hand side. find a formfor Tinx >0
and in x < 0. This computes candidates for T which are correct uptoa distribution
supported at (0).

. Let u be the distribution which integrates a test function over the unit sphere in

R’ with respect to d — | dimensional surface area. Compute
i) fuéx,.  (ii) AuwhereA = Y (€2¢x,).

For je Z(R). j 2 0, j, = ¢ %jix/el sketch j, o u with u as in Problem S, and ¢
converging to zero.

. With n = 1, define f by flx) = sin | 'x if x >0 and zero otherwise. Sketch j, o f

discussing the behavior as # tends to zero.

. Let f be the characteristic function of the positive quadrant, \x € R x;>0.i= 1.2,

Compute (i) ¢, f:(ii) 6,, ¢, f.

. Let f be the characteristic function of the set x, x; > 0. Perform the same calcula-

tions as in Problem 8.

Define f € L(R?) by f = x,x3Ax} + x}) for x # 0. Perform the calculations
as in Problem 8. Hint. Be careful about x = 0. The answer must identify the
distribution derivative on all of R®. Away from x = O the derivatives are given by
elementary calculus. The formal second derivatives are not even locally integrable
near the origin. Problems 12 and 13 have similar difficulties.

Let f be the characteristic function of a nonempty infinite wedge in R x R with

vertex at the origin. Find a constant coefficient second-order partial differential
operator P(D) such that P(D)f = .

Prove that (3)(@/2x + id/oy)(1/z) = rids. Hint. Write {1z, P'(D)o¢) =
lim { 4>, 2~ P'(D)e dx dy. Use Green’s Theorem for the integral on {z| > .

Discussion. The differential operator appearing here is denoted ¢/6%. The fact that
é="4i&7 = 0 for z # D expresses the fact that = ™' is holomorphic away from the
origin. The formula of this problem is equivalent to the Cauchy integral formula.
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13. Take an example from a calculus text illustrating the inequality of mixed partials

and compute the distribution derivatives showing how the mixed partials end up
being cqual.

14. Prove that the principal value of 1/x is a distribution of order 1.

15. Show that the functional

(@) = ‘;’, % (¢ (}.) - ¢(0))

defines a distribution of order 1. Find supp(l). Show that there does not exist a
constant ¢ such that

I<L @)1 < ¢ max (Jo(x)| + |@'(x)])
seppil

Discussion. This example of L. Schwartz shows that a reasonable conjecture
connecting support and order of distributions of compact support is not true.
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